
1

Parallel Programming
With MPI

William Gropp
Argonne National Laboratory

Mathematics and
Computer Science Division

University of Chicago Department of Energy
2

Overview

•  Introduction to MPI
♦  What it is
♦  Where it came from
♦  Basic MPI communication

•  Some simple examples
♦  More advanced MPI communication
♦  A non-trivial exercise
♦  Looking to the future: some features from MPI-2

•  Building programs using MPI libraries
♦  PETSc

•  Poisson solver with no MPI
♦  pnetCDF

•  High performance parallel I/O

University of Chicago Department of Energy
3

Models for Parallel
Computation

•  Shared memory (load, store, lock,
unlock)

•  Message Passing (send, receive,
broadcast, ...)

•  Transparent (compiler works magic)
•  Directive-based (compiler needs help)
•  Others (BSP, OpenMP, ...)
•  Task farming (scientific term for large

transaction processing)

University of Chicago Department of Energy
4

Why Yet Another Parallel
Programming Approach?

•  Distributed memory (shared nothing)
systems
♦ Common, easier to build, dominate high-

end computing (over 329 of top 500; all
1998 Gordon Bell Prize finalists; most
highest-performing applications)

•  Performance depends on managing
memory use
♦ Goal of many parallel programming models

is to simplify programming by hiding details
of memory locality and management
(parallel programming for the masses)

•  Support for modular programming

University of Chicago Department of Energy
5

Message Passing Features

•  Parallel programs consist of separate
processes, each with its own address space
♦  Programmer manages memory by placing data in a

particular process
•  Data sent explicitly between processes

♦  Programmer manages memory motion

•  Collective operations
♦  On arbitrary set of processes

•  Data distribution
♦  Also managed by programmer

•  Message passing model doesn’t get in the way
•  It doesn’t help either

University of Chicago Department of Energy
6

Types of
Parallel Computing Models

•  Data Parallel - the same instructions are
carried out simultaneously on multiple data
items (SIMD)

•  Task Parallel - different instructions on
different data (MIMD)

•  SPMD (single program, multiple data) not
synchronized at individual operation level

•  SPMD is equivalent to MIMD since each MIMD
program can be made SPMD (similarly for
SIMD, but not in practical sense.)

Message passing (and MPI) is for MIMD/SPMD
parallelism. HPF is an example of an SIMD
interface.

University of Chicago Department of Energy
7

Comparison with Other
Models

•  Single process (address space) model
♦ OpenMP and threads in general
♦  Fortran 90/95 and compiler-discovered

parallelism
♦ System manages memory and (usually)

thread scheduling
♦ Named variables refer to the same storage

•  Single name space model
♦ HPF
♦ Data distribution part of the language, but

programs still written as if there is a single
name space

University of Chicago Department of Energy
8

The Distributed Memory or
“Shared-Nothing” Model

•  Integer A(10)

…
print *, A

A(10)

A(10)

•  Integer A(10)
do i=1,10
 A(i) = i
enddo
...

Process 0 Process 1

Different Variables!

Address
Space

University of Chicago Department of Energy
9

The Message-Passing Model

•  A process is (traditionally) a program
counter and address space

•  Processes may have multiple threads
(program counters and associated
stacks) sharing a single address space

•  Message passing is for communication
among processes, which have separate
address spaces

•  Interprocess communication consists of
♦  synchronization
♦ movement of data from one process’s

address space to another’s

University of Chicago Department of Energy
10

What is MPI?

•  A message-passing library specification
♦  extended message-passing model
♦ not a language or compiler specification
♦ not a specific implementation or product

•  For parallel computers, clusters, and
heterogeneous networks

•  Full-featured
•  Designed to provide access to advanced

parallel hardware for end users, library
writers, and tool developers

University of Chicago Department of Energy
11

Where Did MPI Come From?

•  Early vendor systems (Intel’s NX, IBM’s EUI,
TMC’s CMMD) were not portable (or very
capable)

•  Early portable systems (PVM, p4, TCGMSG,
Chameleon) were mainly research efforts
♦  Did not address the full spectrum of issues
♦  Lacked vendor support
♦  Were not implemented at the most efficient level

•  The MPI Forum organized in 1992 with broad
participation by:
♦  vendors: IBM, Intel, TMC, SGI, Convex, Meiko
♦  portability library writers: PVM, p4
♦  users: application scientists and library writers
♦  finished in 18 months

University of Chicago Department of Energy
12

Novel Features of MPI

•  Communicators encapsulate communication
spaces for library safety

•  Datatypes reduce copying costs and permit
heterogeneity

•  Multiple communication modes allow precise
buffer management

•  Extensive collective operations for scalable
global communication

•  Process topologies permit efficient process
placement, user views of process layout

•  Profiling interface encourages portable tools

University of Chicago Department of Energy
13

MPI References

• The Standard itself:
♦ at http://www.mpi-forum.org
♦ All MPI official releases, in both

postscript and HTML
• Other information on Web:

♦ at http://www.mcs.anl.gov/mpi
♦ pointers to lots of stuff, including

other talks and tutorials, a FAQ, other
MPI pages

University of Chicago Department of Energy
14

Books on MPI

•  Using MPI: Portable Parallel Programming
with the Message-Passing Interface (2nd edition),
by Gropp, Lusk, and Skjellum, MIT Press,
1999.

•  Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

•  MPI: The Complete Reference - Vol 1 The MPI Core, by
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press, 1998.

•  MPI: The Complete Reference - Vol 2 The MPI Extensions,
by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg,
Saphir, and Snir, MIT Press, 1998.

•  Designing and Building Parallel Programs, by Ian Foster,
Addison-Wesley, 1995.

•  Parallel Programming with MPI, by Peter Pacheco,
Morgan-Kaufmann, 1997.

University of Chicago Department of Energy
15

Programming With MPI

•  MPI is a library
♦ All operations are performed with routine

calls
♦ Basic definitions in

• mpi.h for C
• mpif.h for Fortran 77 and 90
• MPI module for Fortran 90 (optional)

•  First Program:
♦ Create 4 processes in a simple MPI job
♦ Write out process number
♦ Write out some variables (illustrate separate

name space)

University of Chicago Department of Energy
16

Finding Out About the
Environment

•  Two important questions that arise early
in a parallel program are:
♦ How many processes are participating

in this computation?
♦ Which one am I?

•  MPI provides functions to answer these
questions:
♦ MPI_Comm_size reports the number of

processes.
♦ MPI_Comm_rank reports the rank, a number

between 0 and size-1, identifying the calling
process

University of Chicago Department of Energy
17

Hello (C)
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

University of Chicago Department of Energy
18

Hello (Fortran)

program main
include 'mpif.h'
integer ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE(ierr)
end

University of Chicago Department of Energy
19

Hello (C++)
#include "mpi.h"
#include <iostream>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI::Init(argc, argv);
 rank = MPI::COMM_WORLD.Get_rank();
 size = MPI::COMM_WORLD.Get_size();
 std::cout << "I am " << rank << " of " << size <<

 "\n";
 MPI::Finalize();
 return 0;
}

University of Chicago Department of Energy
20

Notes on Hello World

•  All MPI programs begin with MPI_Init and end
with MPI_Finalize

•  MPI_COMM_WORLD is defined by mpi.h (in C)
or mpif.h (in Fortran) and designates all
processes in the MPI “job”

•  Each statement executes independently in
each process
♦  including the printf/print statements

•  I/O not part of MPI-1
♦  print and write to standard output or error not part

of either MPI-1 or MPI-2
♦  output order is undefined (may be interleaved by

character, line, or blocks of characters),
•  A consequence of the requirement that non-MPI

statements execute independently

University of Chicago Department of Energy
21

Running MPI Programs

•  The MPI-1 Standard does not specify how to run an MPI program, just
as the Fortran standard does not specify how to run a Fortran
program.
♦  Many implementations provided

mpirun –np 4 a.out
to run an MPI program

•  In general, starting an MPI program is dependent on the
implementation of MPI you are using, and might require various
scripts, program arguments, and/or environment variables.

•  mpiexec <args> is part of MPI-2, as a recommendation, but not a
requirement, for implementors.

•  Many parallel systems use a batch environment to share resources
among users
♦  The specific commands to run a program on a parallel system are

defined by the environment installed on the parallel computer

University of Chicago Department of Energy
22

MPI Basic Send/Receive

•  We need to fill in the details in

•  Things that need specifying:
♦ How will “data” be described?
♦ How will processes be identified?
♦ How will the receiver recognize/screen

messages?
♦ What will it mean for these operations to

complete?

Process 0 Process 1

Send(data)
Receive(data)

University of Chicago Department of Energy
23

Some Basic Concepts

•  Processes can be collected into groups
•  Each message is sent in a context, and

must be received in the same context
♦ Provides necessary support for libraries

•  A group and context together form a
communicator

•  A process is identified by its rank in the
group associated with a communicator

•  There is a default communicator whose
group contains all initial processes,
called MPI_COMM_WORLD

University of Chicago Department of Energy
24

MPI Datatypes

•  The data in a message to send or receive is
described by a triple (address, count,
datatype), where

•  An MPI datatype is recursively defined as:
♦  predefined, corresponding to a data type from the

language (e.g., MPI_INT, MPI_DOUBLE)
♦  a contiguous array of MPI datatypes
♦  a strided block of datatypes
♦  an indexed array of blocks of datatypes
♦  an arbitrary structure of datatypes

•  There are MPI functions to construct custom
datatypes, in particular ones for subarrays

University of Chicago Department of Energy
25

MPI Tags

•  Messages are sent with an
accompanying user-defined integer tag,
to assist the receiving process in
identifying the message

•  Messages can be screened at the
receiving end by specifying a specific
tag, or not screened by specifying
MPI_ANY_TAG as the tag in a receive

•  Some non-MPI message-passing
systems have called tags “message
types”. MPI calls them tags to avoid
confusion with datatypes

University of Chicago Department of Energy
26

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag, comm)

•  The message buffer is described by (start,
count, datatype).

•  The target process is specified by dest,
which is the rank of the target process in
the communicator specified by comm.

•  When this function returns, the data has
been delivered to the system and the buffer
can be reused. The message may not have
been received by the target process.

University of Chicago Department of Energy
27

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

•  Waits until a matching (both source and tag) message is

received from the system, and the buffer can be used
•  source is rank in communicator specified by comm, or

MPI_ANY_SOURCE

•  tag is a tag to be matched on or MPI_ANY_TAG
•  receiving fewer than count occurrences of datatype is OK,

but receiving more is an error
•  status contains further information (e.g. size of message)

University of Chicago Department of Energy
28

Send-Receive Summary

•  Send to matching Receive

•  Datatype
♦  Basic for heterogeneity
♦  Derived for non-contiguous

•  Contexts
♦  Message safety for libraries

•  Buffering
♦  Robustness and correctness

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

University of Chicago Department of Energy
29

A Simple MPI Program
#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI_Status status;
 MPI_Init(&argv, &argc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 buf = 123456;
 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
 &status);
 printf(“Received %d\n”, buf);
 }

 MPI_Finalize();
 return 0;
}

University of Chicago Department of Energy
30

A Simple MPI Program
(Fortran)

 program main
 include ‘mpif.h’
 integer rank, buf, ierr, status(MPI_STATUS_SIZE)

 call MPI_Init(ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
C Process 0 sends and Process 1 receives
 if (rank .eq. 0) then
 buf = 123456
 call MPI_Send(buf, 1, MPI_INTEGER, 1, 0,
 * MPI_COMM_WORLD, ierr)
 else if (rank .eq. 1) then
 call MPI_Recv(buf, 1, MPI_INTEGER, 0, 0,
 * MPI_COMM_WORLD, status, ierr)
 print *, “Received “, buf
 endif
 call MPI_Finalize(ierr)
 end

University of Chicago Department of Energy
31

A Simple MPI Program (C++)
#include “mpi.h”
#include <iostream>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI::Init(argv, argc);
 rank = MPI::COMM_WORLD.Get_rank();

 // Process 0 sends and Process 1 receives
 if (rank == 0) {
 buf = 123456;
 MPI::COMM_WORLD.Send(&buf, 1, MPI::INT, 1, 0);
 }
 else if (rank == 1) {
 MPI::COMM_WORLD.Recv(&buf, 1, MPI::INT, 0, 0);
 std::cout << “Received “ << buf << “\n”;
 }

 MPI::Finalize();
 return 0;
}

University of Chicago Department of Energy
32

Retrieving Further
Information

•  Status is a data structure allocated in the user’s program.
•  In C:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

•  In Fortran:
integer recvd_tag, recvd_from, recvd_count
integer status(MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)
tag_recvd = status(MPI_TAG)

recvd_from = status(MPI_SOURCE)
call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

University of Chicago Department of Energy
33

Retrieving Further
Information

•  Status is a data structure allocated in the user’s
program.

•  In C++:
int recvd_tag, recvd_from, recvd_count;
MPI::Status status;
Comm.Recv(..., MPI::ANY_SOURCE, MPI::ANY_TAG, ...,

 status)
recvd_tag = status.Get_tag();
recvd_from = status.Get_source();
recvd_count = status.Get_count(datatype);

University of Chicago Department of Energy
34

Tags and Contexts

•  Separation of messages used to be
accomplished by use of tags, but
♦  this requires libraries to be aware of tags used by

other libraries.
♦  this can be defeated by use of “wild card” tags.

•  Contexts are different from tags
♦  no wild cards allowed
♦  allocated dynamically by the system when a library

sets up a communicator for its own use.
•  User-defined tags still provided in MPI for user

convenience in organizing application

University of Chicago Department of Energy
35

Running MPI Programs

•  The MPI-1 Standard does not specify how to run an MPI
program, just as the Fortran standard does not specify how to
run a Fortran program.

•  In general, starting an MPI program is dependent on the
implementation of MPI you are using, and might require
various scripts, program arguments, and/or environment
variables.

•  mpiexec <args> is part of MPI-2, as a recommendation, but
not a requirement, for implementors.

•  Use
 mpirun –np # -nolocal a.out
for your clusters, e.g.
 mpirun –np 3 –nolocal cpi

University of Chicago Department of Energy
36

MPI is Simple

•  Many parallel programs can be written
using just these six functions, only two
of which are non-trivial:
♦ MPI_INIT

♦ MPI_FINALIZE

♦ MPI_COMM_SIZE

♦ MPI_COMM_RANK

♦ MPI_SEND

♦ MPI_RECV

University of Chicago Department of Energy
37

Another Approach to
Parallelism

• Collective routines provide a
higher-level way to organize a
parallel program

• Each process executes the same
communication operations

• MPI provides a rich set of collective
operations…

University of Chicago Department of Energy
38

Collective Operations in MPI
•  Collective operations are called by all

processes in a communicator
•  MPI_BCAST distributes data from one

process (the root) to all others in a
communicator

•  MPI_REDUCE combines data from all
processes in communicator and returns
it to one process

•  In many numerical algorithms, SEND/
RECEIVE can be replaced by BCAST/
REDUCE, improving both simplicity and
efficiency

University of Chicago Department of Energy
39

Example: PI in C - 1
#include "mpi.h"
#include <math.h>

#include <stdio.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
 if (myid == 0) {
 printf("Enter the number of intervals: (0 quits) ");
 scanf("%d",&n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;

University of Chicago Department of Energy
40

Example: PI in C - 2
 h = 1.0 / (double) n;

 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (myid == 0)
 printf("pi is approximately %.16f, Error is .16f\n",
 pi, fabs(pi - PI25DT));
}
MPI_Finalize();

 return 0;
}

University of Chicago Department of Energy
41

Example: PI in Fortran - 1
 program main
 include ‘mpif.h’
 integer done, n, myid, numprocs, i, rc
 double pi25dt, mypi, pi, h, sum, x, z
 data done/.false./
 data PI25DT/3.141592653589793238462643/
 call MPI_Init(ierr)
 call MPI_Comm_size(MPI_COMM_WORLD,numprocs, ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD,myid, ierr)
 do while (.not. done)
 if (myid .eq. 0) then
 print *,”Enter the number of intervals: (0 quits)“
 read *, n
 endif
 call MPI_Bcast(n, 1, MPI_INTEGER, 0,
 * MPI_COMM_WORLD, ierr)
 if (n .eq. 0) goto 10

University of Chicago Department of Energy
42

Example: PI in Fortran - 2
 h = 1.0 / n

 sum = 0.0
 do i=myid+1,n,numprocs
 x = h * (i - 0.5)

 sum += 4.0 / (1.0 + x*x)
 enddo
 mypi = h * sum
 call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE_PRECISION,
 * MPI_SUM, 0, MPI_COMM_WORLD, ierr)
 if (myid .eq. 0) then
 print *, "pi is approximately “, pi,
 * “, Error is “, abs(pi - PI25DT)

 enddo
10   continue

 call MPI_Finalize(ierr)
 end

University of Chicago Department of Energy
43

Example: PI in C++ - 1
#include "mpi.h"
#include <math.h>
#include <iostream>
int main(int argc, char *argv[])
{
 int done = 0, n, myid, numprocs, i, rc;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x, a;
 MPI::Init(argc, argv);
 numprocs = MPI::COMM_WORLD.Get_size();
 myid = MPI::COMM_WORLD.Get_rank();
 while (!done) {
 if (myid == 0) {
 std::cout << "Enter the number of intervals: (0 quits) ";
 std::cin >> n;;
 }
 MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0);
 if (n == 0) break;

University of Chicago Department of Energy
44

Example: PI in C++ - 2
 h = 1.0 / (double) n;

 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI::DOUBLE,
 MPI::SUM, 0);
 if (myid == 0)
 std::cout << "pi is approximately “ << pi <<
 “, Error is “ << fabs(pi - PI25DT) << “\n”;
}
MPI::Finalize();

 return 0;
}

University of Chicago Department of Energy
45

Notes on C and Fortran

•  C and Fortran bindings correspond closely
•  In C:

♦  mpi.h must be #included
♦  MPI functions return error codes or MPI_SUCCESS

•  In Fortran:
♦  mpif.h must be included, or use MPI module
♦  All MPI calls are to subroutines, with a place for the

return code in the last argument.

•  C++ bindings, and Fortran-90 issues, are part of
MPI-2.

University of Chicago Department of Energy
46

Alternative Set of 6 Functions

• Using collectives:
♦ MPI_INIT

♦ MPI_FINALIZE

♦ MPI_COMM_SIZE

♦ MPI_COMM_RANK

♦ MPI_BCAST

♦ MPI_REDUCE

University of Chicago Department of Energy
47

More on Message Passing

• Message passing is a simple
programming model, but there are
some special issues
♦ Buffering and deadlock
♦ Deterministic execution
♦ Performance

University of Chicago Department of Energy
48

Buffers

•  When you send data, where does it go?
One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

University of Chicago Department of Energy
49

Avoiding Buffering

•  It is better to avoid copies:

This requires that MPI_Send wait on delivery, or
that MPI_Send return before transfer is complete,
and we wait later.

Process 0 Process 1

User data

User data

the network

University of Chicago Department of Energy
50

Blocking and Non-blocking
Communication

• So far we have been using
blocking communication:
♦ MPI_Recv does not complete until the

buffer is full (available for use).
♦ MPI_Send does not complete until the

buffer is empty (available for use).
• Completion depends on size of

message and amount of system
buffering.

University of Chicago Department of Energy
51

•  Send a large message from process 0 to
process 1
♦  If there is insufficient storage at the destination, the

send must wait for the user to provide the memory
space (through a receive)

•  What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

•  This is called “unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received

University of Chicago Department of Energy
52

Some Solutions to the “unsafe”
Problem

•  Order the operations more carefully:

•  Supply receive buffer at same time as send:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

University of Chicago Department of Energy
53

More Solutions to the “unsafe”
Problem

•  Supply own space as buffer for send

•  Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

University of Chicago Department of Energy
54

MPI’s Non-blocking
Operations

•  Non-blocking operations return
(immediately) “request handles” that
can be tested and waited on:
MPI_Request request;
MPI_Status status;

 MPI_Isend(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Irecv(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Wait(&request, &status);
(each request must be Waited on)

•  One can also test without waiting:
 MPI_Test(&request, &flag, &status);

University of Chicago Department of Energy
55

MPI’s Non-blocking Operations
(Fortran)

•  Non-blocking operations return
(immediately) “request handles” that can
be tested and waited on:
integer request
integer status(MPI_STATUS_SIZE)

 call MPI_Isend(start, count, datatype,
 dest, tag, comm, request,ierr)

 call MPI_Irecv(start, count, datatype,
 dest, tag, comm, request, ierr)

 call MPI_Wait(request, status, ierr)
(Each request must be waited on)

•  One can also test without waiting:
 call MPI_Test(request, flag, status, ierr)

University of Chicago Department of Energy
56

MPI’s Non-blocking
Operations (C++)

•  Non-blocking operations return
(immediately) “request handles” that
can be tested and waited on:
MPI::Request request;
MPI::Status status;

 request = comm.Isend(start, count,
 datatype, dest, tag);

 request = comm.Irecv(start, count,
 datatype, dest, tag);

 request.Wait(status);
(each request must be Waited on)

•  One can also test without waiting:
 flag = request.Test(status);

University of Chicago Department of Energy
57

Multiple Completions

•  It is sometimes desirable to wait on multiple
requests:

 MPI_Waitall(count, array_of_requests,
 array_of_statuses)

 MPI_Waitany(count, array_of_requests,
 &index, &status)

 MPI_Waitsome(count, array_of_requests,
 array_of indices, array_of_statuses)

•  There are corresponding versions of test
for each of these.

University of Chicago Department of Energy
58

Multiple Completions
(Fortran)

•  It is sometimes desirable to wait on multiple
requests:

 call MPI_Waitall(count, array_of_requests,
 array_of_statuses, ierr)

 call MPI_Waitany(count, array_of_requests,
 index, status, ierr)

 call MPI_Waitsome(count, array_of_requests,
 array_of indices, array_of_statuses, ierr)

•  There are corresponding versions of test
for each of these.

University of Chicago Department of Energy
59

Communication Modes

•  MPI provides multiple modes for sending
messages:
♦  Synchronous mode (MPI_Ssend): the send does not

complete until a matching receive has begun.
(Unsafe programs deadlock.)

♦  Buffered mode (MPI_Bsend): the user supplies a
buffer to the system for its use. (User allocates
enough memory to make an unsafe program safe.

♦  Ready mode (MPI_Rsend): user guarantees that a
matching receive has been posted.

•  Allows access to fast protocols
•  undefined behavior if matching receive not posted

•  Non-blocking versions (MPI_Issend, etc.)
•  MPI_Recv receives messages sent in any

mode.

University of Chicago Department of Energy
60

Other Point-to Point Features

• MPI_Sendrecv
• MPI_Sendrecv_replace
• MPI_Cancel

♦ Useful for multibuffering
• Persistent requests

♦ Useful for repeated communication
patterns

♦ Some systems can exploit to reduce
latency and increase performance

University of Chicago Department of Energy
61

MPI_Sendrecv

•  Allows simultaneous send and receive
•  Everything else is general.

♦ Send and receive datatypes (even type
signatures) may be different

♦ Can use Sendrecv with plain Send or Recv
(or Irecv or Ssend_init, …)

♦ More general than “send left”
Process 0

SendRecv(1)

Process 1

SendRecv(0)

University of Chicago Department of Energy
62

MPI Collective
Communication

•  Communication and computation is
coordinated among a group of processes in a
communicator.

•  Groups and communicators can be constructed
“by hand” or using topology routines.

•  Tags are not used; different communicators
deliver similar functionality.

•  No non-blocking collective operations.
•  Three classes of operations: synchronization,

data movement, collective computation.

University of Chicago Department of Energy
63

Synchronization

• MPI_Barrier(comm)
• Blocks until all processes in the

group of the communicator comm
call it.

• Almost never required in a parallel
program
♦ Occasionally useful in measuring

performance and load balancing

University of Chicago Department of Energy
64

Synchronization (Fortran)

• MPI_Barrier(comm, ierr)
• Blocks until all processes in the

group of the communicator comm
call it.

University of Chicago Department of Energy
65

Synchronization (C++)

• comm.Barrier();
• Blocks until all processes in the

group of the communicator comm
call it.

University of Chicago Department of Energy
66

Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0
P1

P2

P3

P0
P1

P2

P3

University of Chicago Department of Energy
67

Comments on Broadcast

•  All collective operations must be called by all
processes in the communicator

•  MPI_Bcast is called by both the sender (called
the root process) and the processes that are
to receive the broadcast
♦  MPI_Bcast is not a “multi-send”
♦  “root” argument is the rank of the sender; this tells

MPI which process originates the broadcast and
which receive

•  Example of orthogonallity of the MPI design:
MPI_Recv need not test for “multisend”

University of Chicago Department of Energy
68

More Collective Data
Movement

A
B

D
C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3
B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0
P1

P2

P3

P0
P1

P2

P3

University of Chicago Department of Energy
69

Collective Computation

P0
P1

P2

P3

P0
P1

P2

P3

A
B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

University of Chicago Department of Energy
70

MPI Collective Routines

•  Many Routines: Allgather, Allgatherv, Allreduce,
Alltoall, Alltoallv, Bcast, Gather, Gatherv,
Reduce, Reduce_scatter, Scan, Scatter, Scatterv

•  All versions deliver results to all participating
processes.

•  V versions allow the hunks to have different sizes.
•  Allreduce, Reduce, Reduce_scatter, and Scan take

both built-in and user-defined combiner functions.
•  MPI-2 adds Alltoallw, Exscan, intercommunicator

versions of most routines

University of Chicago Department of Energy
71

MPI Built-in Collective
Computation Operations

•  MPI_MAX
•  MPI_MIN
•  MPI_PROD
•  MPI_SUM
•  MPI_LAND
•  MPI_LOR
•  MPI_LXOR
•  MPI_BAND
•  MPI_BOR
•  MPI_BXOR
•  MPI_MAXLOC
•  MPI_MINLOC

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Binary and
Binary or
Binary exclusive or
Maximum and location
Minimum and location

University of Chicago Department of Energy
72

The Collective Programming
Model

• One style of higher level
programming is to use only
collective routines

• Provides a “data parallel” style of
programming
♦ Easy to follow program flow

University of Chicago Department of Energy
73

What MPI Functions
are in Use?

•  For simple applications, these are
common:
♦ Point-to-point communication

• MPI_Irecv, MPI_Isend, MPI_Wait, MPI_Send,
MPI_Recv

♦ Startup
• MPI_Init, MPI_Finalize

♦  Information on the processes
• MPI_Comm_rank, MPI_Comm_size,

MPI_Get_processor_name

♦ Collective communication
• MPI_Allreduce, MPI_Bcast, MPI_Allgather

University of Chicago Department of Energy
74

Understanding and Predicting
Performance

•  Not all programs will run faster in
parallel
♦ The benefit of additional processors may be

outweighed by the cost of moving data
between them

•  A typical cost model is

fraction parallel
fraction le)parallizab-(non serial

overheadion communicat

=

=

=

++=

p

s

c

cs
p

T
T
T

TT
p
T

T This term is zero for p=1

University of Chicago Department of Energy

Latency and Bandwidth

•  Simplest model s + r n
•  s includes both hardware (gate delays)

and software (context switch, setup)
•  r includes both hardware (raw

bandwidth of interconnection and
memory system) and software
(packetization, copies between user and
system)

•  Head-to-head and pingpong values may
differ

University of Chicago Department of Energy

•  Bandwidth is the inverse of the slope of the line
time = latency + (1/rate) size_of_message

•  For performance estimation purposes, latency is the
limit(n→0) of the time to send n bytes

•  Latency is sometimes described as “time to send a
message of zero bytes”. This is true only for the simple
model. The number quoted is sometimes misleading.

Interpreting Latency and
Bandwidth

Latency

1/slope=Bandwidth

Message Size

Time
to Send
Message

Not latency

University of Chicago Department of Energy

Timing MPI Programs (C)

•  The elapsed (wall-clock) time between two
points in an MPI program can be computed
using MPI_Wtime:
 double t1, t2;
 t1 = MPI_Wtime();
 ...
 t2 = MPI_Wtime();
 printf(“time is %f\n”, t2 - t1);

•  The value returned by a single call to
MPI_Wtime has little value.

•  Times in general are local, but an
implementation might offer synchronized
times. See attribute MPI_WTIME_IS_GLOBAL.

University of Chicago Department of Energy

Timing MPI Programs
(Fortran)

•  The elapsed (wall-clock) time between two
points in an MPI program can be computed
using MPI_Wtime:
 double precision t1, t2
 t1 = MPI_Wtime()
 ...
 t2 = MPI_Wtime()
 print *, ‘time is ‘, t2 - t1

•  The value returned by a single call to
MPI_Wtime has little value.

•  Times in general are local, but an
implementation might offer synchronized
times. See attribute MPI_WTIME_IS_GLOBAL.

University of Chicago Department of Energy

Measuring Performance

•  Using MPI_Wtime
♦  timers are not continuous — use MPI_Wtick to find

resolution
•  MPI_Wtime is local unless the

MPI_WTIME_IS_GLOBAL attribute is true
♦  MPI attributes are an advanced topic – ask me

afterwards if you are interested
•  MPI Profiling interface provides a way to easily

instrument the MPI calls in an application
•  Many performance measurement tools exist

for MPI programs — take advantage of them

University of Chicago Department of Energy
80

Performance Visualization with Jumpshot

•  For detailed analysis of parallel program
behavior, timestamped events are
collected into a log file during the run.

•  A separate display program (Jumpshot)
aids the user in conducting a post
mortem analysis of program behavior.

Logfile

Jumpshot

Processes

Display

University of Chicago Department of Energy
81

Using Jumpshot to look at FLASH at
multiple Scales

Each line represents
1000’s of messages Detailed view shows opportunities for

optimization

1000 x

University of Chicago Department of Energy

Implementing Master/Worker
Algorithms

• Many algorithms have one or more
master processes that send tasks
and receive results from worker
processes

• Because there is one (or a few)
controlling processes, the master
can become a bottleneck

University of Chicago Department of Energy
83

Skeleton Master Process

•  do while(.not. Done)
 ! Get results from anyone
 call MPI_Recv(a,…, status, ierr)
 ! If this is the last data item,
 ! set done to .true.
 ! Else send more work to them
 call MPI_Send(b,…,status(MPI_SOURCE),&
 … , ierr)
enddo

• Not included:
♦ Sending initial work to all processes
♦ Deciding when to set done

University of Chicago Department of Energy
84

Skeleton Worker Process

•  Do while (.not. Done)
 ! Receive work from master
 call MPI_Recv(a, …, status, ierr)
 … compute for task
 ! Return result to master
 call MPI_Send(b, …, ierr)
enddo

•  Not included:
♦ Detection of termination (probably message

from master)
♦ An alternative would be a test for a nonblocking

barrier (which MPI doesn’t have)

University of Chicago Department of Energy
85

Problems With Master/
Worker

•  Worker processes have nothing to do
while waiting for the next task

•  Many workers may try to send data to
the master at the same time
♦ Could be a problem if data size is very

large, such as 20-100 MB
•  Master may fall behind in servicing

requests for work if many processes ask
in a very short interval

•  Presented with many requests, master
may not evenly respond

University of Chicago Department of Energy
86

Spreading out
communication

•  Use double buffering to overlap request for more
work with work
Do while (.not. Done)
 ! Receive work from master
 call MPI_Wait(request, status, ierr)
 ! Request MORE work
 call MPI_Send(…, send_work, …, ierr)
 call MPI_IRecv(a2, …, request, ierr)
 … compute for task
 ! Return result to master (could also be nb)
 call MPI_Send(b, …, ierr)
enddo

•  MPI_Cancel
♦  Last Irecv may never match; remove it with MPI_Cancel
♦  You must still complete the request with MPI_Test or

MPI_Wait, or MPI_Request_free.

University of Chicago Department of Energy
87

Limiting Memory Demands
on Master

•  Using MPI_Ssend and MPI_Issend to
encourage limits on memory demands
♦ MPI_Ssend and MPI_Issend do not specify

that the data itself doesn’t move until the
matching receive is issued, but that is the
easiest (and most common) way to
implement the synchronous send operations

♦ Replace MPI_Send in worker with
• MPI_Ssend for blocking
• MPI_Issend for nonblocking (even less

synchronization)

University of Chicago Department of Energy
88

Distributing work further

• Use multiple masters, workers
select a master to request work
from at random

• Keep more work locally
• Use threads to implement work

stealing (but you must be use a
thread-safe implementation of
MPI)

University of Chicago Department of Energy
89

Mesh-Based Computations in
MPI

•  First step: decompose the problem
•  Second step: arrange for the

communication of data
•  Example: “Jacobi” iteration

♦ Represents the communication in many
mesh-based computations

♦ Not a good algorithm (we’ll see better ways
later)

♦ Not the best decomposition (more scalable
decompositions are more complex to
program — unless you use higher-level
libraries)

University of Chicago Department of Energy
90

Jacobi Iteration
(Fortran Ordering)

•  Simple parallel data structure

•  Processes exchange columns with neighbors
•  Local part declared as xlocal(m,0:n+1)

Process 0 Process 1 Process 2 Process 3

Boundary Point

Interior Node

m

n

University of Chicago Department of Energy
91

Send and Recv (Fortran)

•  Simplest use of send and recv
integer status(MPI_STATUS_SIZE)

call MPI_Send(xlocal(1,1), m, MPI_DOUBLE_PRECISION, &
 left_nbr, 0, ring_comm, ierr)
call MPI_Recv(xlocal(1,0), m, MPI_DOUBLE_PRECISION, &
 right_nbr, 0, ring_comm, status, ierr)
call MPI_Send(xlocal(1,n), m, MPI_DOUBLE_PRECISION, &
 right_nbr, 0, ring_comm, ierr)
call MPI_Recv(xlocal(1,n+1), m, MPI_DOUBLE_PRECISION, &
 left_nbr, 0, ring_comm, status, ierr)

University of Chicago Department of Energy
92

Performance of Simplest
Code

• Very poor performance on SP2
♦ Rendezvous sequentializes
sends/receives

• OK performance on T3D
(implementation tends to
buffer operations)

University of Chicago Department of Energy
93

Better to start receives first
(Fortran)

•  Irecv, Isend, Waitall - ok performance
integer statuses(MPI_STATUS_SIZE,4), requests(4)

call MPI_Irecv(xlocal(1,0), m, MPI_DOUBLE_PRECISION,&
 left_nbr, ring_comm, requests(2), ierr)
call MPI_Irecv(xlocal(1,n+1), m, MPI_DOUBLE_PRECISION,&
 right_nbr, ring_comm, requests(4), ierr)
call MPI_Isend(xlocal(1,n), m, MPI_DOUBLE_PRECISION, &
 right_nbr, ring_comm, requests(1), ierr)
call MPI_Isend(xlocal(1,1), m, MPI_DOUBLE_PRECISION, &
 left_nbr, ring_comm, requests(3), ierr)
call MPI_Waitall(4, requests, statuses, ierr)

University of Chicago Department of Energy

MPI and Threads

• Symmetric Multiprocessors (SMPs)
are a common building block of
many parallel machines

• The preferred programming model
for SMPs with threads
♦ POSIX (“pthreads”)
♦ OpenMP
♦ sproc (SGI)
♦ compiler-managed parallelism

University of Chicago Department of Energy
95

Thread Interfaces

•  POSIX “pthreads”
•  Windows

♦  Kernel threads
♦  User threads called “fibers”

•  Java
♦  First major language with threads in the language
♦  Provides memory synchronization model: methods

(procedures) declared “synchronized” executed by
one thread at a time

♦  (don’t mention Ada, which has tasks)
•  OpenMP

♦  Mostly directive-based parallel loops
♦  Some thread features (lock/unlock)
♦  http://www.openmp.org

Library-based

Invoke a routine in a
separate thread

University of Chicago Department of Energy
96

Threads and MPI

•  MPI_Init_thread(&argc,&argv,required,&provided)
♦  Thread modes:

•  MPI_THREAD_SINGLE — One thread (MPI_Init)
•  MPI_THREAD_FUNNELED — One thread making MPI

calls – most common case when MPI combined with
OpenMP

•  MPI_THREAD_SERIALIZED — One thread at a time
making MPI calls

•  MPI_THREAD_MULTIPLE — Free for all

•  Coexist with compiler (thread) parallelism for
SMPs

•  MPI could have defined the same modes on a
communicator basis (more natural, and MPICH
will do this through attributes)

University of Chicago Department of Energy
97

What’s in MPI-2

•  Extensions to the message-passing model
♦  Dynamic process management
♦  One-sided operations (remote memory access)
♦  Parallel I/O
♦  Thread support

•  Making MPI more robust and convenient
♦  C++ and Fortran 90 bindings
♦  External interfaces, handlers
♦  Extended collective operations
♦  Language interoperability

University of Chicago Department of Energy
98

MPI as a Setting for Parallel
I/O

•  Writing is like sending and reading is
like receiving

•  Any parallel I/O system will need:
♦  collective operations
♦ user-defined datatypes to describe both

memory and file layout
♦  communicators to separate application-level

message passing from I/O-related message
passing

♦ non-blocking operations
•  I.e., lots of MPI-like machinery
•  We will discuss a high-level approach to

using MPI-IO

University of Chicago Department of Energy
99

One-Sided Operations in MPI-2
(also called Remote Memory Access)

•  Synchronization is separate from data
movement.

•  Balancing efficiency and portability across a
wide class of architectures
♦  shared-memory multiprocessors
♦ NUMA architectures
♦ distributed-memory MPP’s, clusters
♦ Workstation networks

•  Retaining “look and feel” of MPI-1
•  Dealing with subtle memory behavior

issues: cache coherence, sequential
consistency

University of Chicago Department of Energy
100

Remote Memory Access
Windows and Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

University of Chicago Department of Energy
101

Why Use RMA?

• Performance
• May allow more dynamic,

asynchronous algorithms
• But Get/Put is not Load/Store

♦ Synchronization is exposed in MPI
one-sided operations

University of Chicago Department of Energy
102

Basic RMA Functions for
Communication

•  MPI_Win_create exposes local memory to RMA
operation by other processes in a communicator
♦  Collective operation
♦  Creates window object

•  MPI_Win_free deallocates window object

•  MPI_Put moves data from local memory to remote
memory

•  MPI_Get retrieves data from remote memory into local
memory

•  MPI_Accumulate updates remote memory using local
values

•  Data movement operations are non-blocking
•  Subsequent synchronization on window object needed

to ensure operation is complete

University of Chicago Department of Energy
103

RMA Functions for
Synchronization

•  Multiple ways to synchronize:
•  MPI_Win_fence – barrier across all processes

participating in window, allows BSP-like model
•  MPI_Win_{start, complete, post, wait}

♦  involves groups of processes, such as nearest neighbors in
grid

•  MPI_Win_{lock, unlock} – involves single other
process
♦  Not to be confused with lock,unlock used with threads

University of Chicago Department of Energy
104

Comparing RMA and
Point-to-Point Communication

• The following example shows how
to achieve the same
communication pattern using
point-to-point and remote memory
access communication

•  Illustrates the issues, not an
example of where to use RMA

University of Chicago Department of Energy
105

Point-to-point

/* Create communicator for separate context for processes 0 and 1 */
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_split(MPI_COMM_WORLD, rank <= 1, rank, &comm);
/* Only processes 0 and 1 execute the rest of this */
if (rank > 1) return;
/* Process 0 sends and Process 1 receives */
if (rank == 0) {
 MPI_Isend(outbuf, n, MPI_INT, 1, 0, comm, &request);
}
else if (rank == 1) {
 MPI_Irecv(inbuf, n, MPI_INT, 0, 0, comm, &request);
}
/* Allow other operations to proceed (communication or
 computation) */
…
/* Complete the operation */
MPI_Wait(&request, &status);
/* Free communicator */
MPI_Comm_free(&comm);

University of Chicago Department of Energy
106

RMA
/* Create memory window for separate context for processes 0
and 1 */
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_split(MPI_COMM_WORLD, rank <= 1, rank, &comm);
if (rank == 0)
 MPI_Win_create(NULL, 0, sizeof(int),
 MPI_INFO_NULL, comm, &win);
else if (rank == 1)
 MPI_Win_create(inbuf, n * sizeof(int), sizeof(int),
 MPI_INFO_NULL, comm, &win);
/* Only processes 0 and 1 execute the rest of this */
if (rank > 1) return;
/* Process 0 puts into process 1 */
MPI_Win_fence(0, win);
if (rank == 0)
 MPI_Put(outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win);
/* Allow other operations to proceed (communication or
computation) */
…
/* Complete the operation */
MPI_Win_fence(0, win);
/* Free the window */
MPI_Win_free(&win);

University of Chicago Department of Energy
107

Using MPI_Win_fence

MPI_Win_create(A, ..., &win);
MPI_Win_fence(0, win);
if (rank == 0) {
 /* Process 0 puts data into many local windows */
 MPI_Put(... , win);
 MPI_Put(... , win);
}
/* This fence completes the MPI_Put operations initiated
 by process 0 */
MPI_Win_fence(0, win);
/* All processes initiate access to some window to extract data */
MPI_Get(... , win);
/* The following fence completes the MPI_Get operations */
MPI_Win_fence(0, win);
/* After the fence, processes can load and store into A, the local window */
A[rank] = 4;
printf("A[%d] = %d\n", 0, A[0]);
MPI_Win_fence(0, win);
/* We need a fence between stores and RMA operations */
MPI_Put(... , win);
/* The following fence completes the preceding Put */
MPI_Win_fence(0, win);

University of Chicago Department of Energy
108

Example of MPI RMA:
Ghost Point Exchange

• Multiparty data exchange
•  Jacobi iteration in 2 dimensions

♦ Model for PDEs, Sparse matrix-vector
products, and algorithms with
surface/volume behavior

♦ Issues are similar to unstructured
grid problems (but harder to
illustrate)

University of Chicago Department of Energy
109

Jacobi Iteration
(Fortran Ordering)

•  Simple parallel data structure

•  Processes exchange columns with neighbors
•  Local part declared as xlocal(m,0:n+1)

Process 0 Process 1 Process 2 Process 3

Boundary Point

Interior Node

m+2

n

University of Chicago Department of Energy
110

Ghostpoint Exchange with
RMA

subroutine exchng1(a, m, s, e, win, left_nbr, right_nbr)
use mpi
integer m, s, e
double precision a(0:m+1,s-1:e+1)
integer win, left_nbr, right_nbr
integer ierr
integer(kind=MPI_ADDRESS_KIND) left_ghost_disp, right_ghost_disp

call MPI_WIN_FENCE(0, win, ierr)
! Put left edge into left neighbor's right ghost cells
right_ghost_disp = 1 + (m+2)*(e-s+2)
call MPI_PUT(a(1,s), m, MPI_DOUBLE_PRECISION, &
 left_nbr, right_ghost_disp, m, &
 MPI_DOUBLE_PRECISION, win, ierr)
! Put bottom edge into right neighbor's left ghost cells
left_ghost_disp = 1
call MPI_PUT(a(1,e), m, MPI_DOUBLE_PRECISION, &
 right_nbr, left_ghost_disp, m, &
 MPI_DOUBLE_PRECISION, win, ierr)
call MPI_WIN_FENCE(0, win, ierr)
return
end

University of Chicago Department of Energy
111

MPI-2 Status Assessment

•  All MPP vendors now have MPI-1. Free
implementations (MPICH, LAM) support
heterogeneous workstation networks.

•  MPI-2 implementations are being undertaken now
by all vendors.
♦  Multiple complete MPI-2 implementations available

•  MPI-2 implementations appearing piecemeal, with
I/O first.
♦  I/O available in most MPI implementations
♦  One-sided available in some (e.g .NEC and Fujitsu, parts

from SGI and HP, parts coming soon from IBM)
♦  MPI RMA an important part of the spectacular results on

the Earth Simulator
♦  Most of dynamic and one sided in LAM, WMPI, MPICH2

University of Chicago Department of Energy
112

MPICH Goals

•  Complete MPI implementation
•  Portable to all platforms supporting the message-

passing model
•  High performance on high-performance hardware
•  As a research project:

♦  exploring tradeoff between portability and performance
♦  removal of performance gap between user level (MPI) and

hardware capabilities
•  As a software project:

♦  a useful free implementation for most machines
♦  a starting point for vendor proprietary implementations

University of Chicago Department of Energy
113

MPICH2

•  All-new implementation is our vehicle for research in
♦  Thread safety and efficiency (e.g., avoid thread locks)
♦  Optimized MPI datatypes
♦  Optimized Remote Memory Access (RMA)
♦  High Scalability (64K MPI processes and more)
♦  Exploiting Remote Direct Memory Access (RDMA) capable networks

(Myrinet)
♦  All of MPI-2, including dynamic process management, parallel I/O,

RMA
•  Parallel Environments

♦  Clusters
♦  IBM BG/L
♦  New interconnect technologies (Infiniband)
♦  Cray Red Storm
♦  Others
♦  Many vendors start with MPICH in crafting custom, optimized MPI’s

University of Chicago Department of Energy
114

MPICH-2 Status and
Schedule

•  Supports all of MPI-1 and all of MPI-2, including all of
MPI-IO, active-target RMA, dynamic processes, passive-
target RMA on many platforms

•  Improved performance
•  New algorithms for collective operations
•  Improved robustness
•  Process manager interface

♦  Supports multiple process managers
♦  Includes the MPD-based manager (provides scalable

startup)
•  Multiple devices implemented

♦  Sockets, shared memory, Infiniband
♦  Many groups already using MPICH2 for their MPI

implementations

University of Chicago Department of Energy
115

Getting MPICH for Your
Cluster

• MPICH1:
♦ www.mcs.anl.gov/mpi/mpich

• MPICH2:
♦ www.mcs.anl.gov/mpi/mpich2

University of Chicago Department of Energy
116

High-Level Programming
With MPI

• MPI was designed from the
beginning to support libraries

• Many libraries exist, both open
source and commercial

• Sophisticated numerical programs
can be built using libraries
♦ Scalable I/O of data to a community

standard file format
♦ Solve a PDE (e.g., PETSc)

University of Chicago Department of Energy
117

Higher Level I/O Libraries

•  Scientific applications work with
structured data and desire more self-
describing file formats

•  netCDF and HDF5 are two popular
“higher level” I/O libraries
♦ Abstract away details of file layout
♦ Provide standard, portable file formats
♦  Include metadata describing contents

•  For parallel machines, these should be
built on top of MPI-IO

University of Chicago Department of Energy
118

Parallel netCDF (PnetCDF)

•  Collaboration between NWU and ANL as part of
the Scientific Data Management SciDAC

•  netCDF
♦  API for accessing multi-dimensional data sets
♦  Portable file format

•  Popular in both fusion and climate communities
•  Parallel netCDF is an effort to

♦  Very similar API to netCDF
♦  Tuned for better performance in today’s computing

environments
♦  Retains the file format so netCDF and PnetCDF

applications can share files

University of Chicago Department of Energy
119

I/O in netCDF

•  Original netCDF
♦  Parallel read

•  All processes read the file independently
•  No possibility of collective optimizations

♦  Sequential write
•  Parallel writes are carried out by

shipping data to a single process

•  PnetCDF
♦  Parallel read/write to shared netCDF

file
♦  Built on top of MPI-IO which utilizes

optimal I/O facilities of the parallel file
system and MPI-IO implementation

♦  Allows for MPI-IO hints and datatypes
for further optimization

P0 P1 P2 P3

netCDF

Parallel File System

Parallel netCDF

P0 P1 P2 P3

Parallel File System

University of Chicago Department of Energy
120

PnetCDF Example Part 1

int main(int argc, char *argv[])
{
 double temps[512*512/NR_PROCS];
 int status, lon_id, lat_id, temp_id, dim_id[2],
 dim_off[2], dim_size[2];
 status = ncmpi_create(MPI_COMM_WORLD, “foo”,
 NC_CLOBBER, MPI_INFO_NULL, &file_id);
 status = ncmpi_def_dim(file_id, “longitude”,
 512, &lon_id);
 status = ncmpi_def_dim(file_id, “latitude”,
 512, &lat_id);
 dim_id[0] = lon_id; dim_id[1] = lat_id;
 status = ncmpi_def_var(file_id, “temp”,
 NC_DOUBLE, 2, dim_id, &temp_id);

University of Chicago Department of Energy
121

PnetCDF Example Part 2

 /* leave define mode, enter coll. data mode */
 status = ncmpi_enddef(file_id);

 partition_problem_space(dim_off, dim_size);

 /* perform calculations until time to write */

 /* each proc. writes its part. collectively */
 status = ncmpi_put_vara_double_all(file_id,
 temp_id, dim_off, dim_size, temps);

 status = ncmpi_close(file_id);

}

University of Chicago Department of Energy
122

More Information on
PnetCDF

• Parallel netCDF web site:
http://www.mcs.anl.gov/parallel-

netcdf/
• Parallel netCDF mailing list:

Mail to majordomo@mcs.anl.gov with
the body “subscribe parallel-netcdf”

• The SDM SciDAC web site:
http://sdm.lbl.gov/sdmcenter/

University of Chicago Department of Energy
123

The PETSc Library

•  PETSc provides routines for the parallel
solution of systems of equations that
arise from the discretization of PDEs
♦  Linear systems
♦ Nonlinear systems
♦ Time evolution

•  PETSc also provides routines for
♦ Sparse matrix assembly
♦ Distributed arrays
♦ General scatter/gather (e.g., for

unstructured grids)

University of Chicago Department of Energy
124

Hello World in PETSc

#include "petsc.h"

int main(int argc, char *argv[])

{

 int rank;

 PetscInitialize(&argc, &argv, 0, 0);

 MPI_Comm_rank(PETSC_COMM_WORLD, &rank);

 PetscSynchronizedPrintf(PETSC_COMM_WORLD,

 "Hello World from rank %d\n", rank);

 PetscSynchronizedFlush(PETSC_COMM_WORLD);

 PetscFinalize();

 return 0;
}

University of Chicago Department of Energy
125

Computation and Communication Kernels"
MPI, MPI-IO, BLAS, LAPACK"

Profiling Interface"

PETSc PDE Application Codes"

Object-Oriented"
Matrices, Vectors, Indices"

Grid"
Management"

Linear Solvers"
Preconditioners + Krylov Methods"

Nonlinear Solvers,"
Unconstrained Minimization"

ODE Integrators" Visualization"

Interface

Structure of PETSc

University of Chicago Department of Energy
126

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other
Index Sets

Vectors

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others
Preconditioners

Euler Backward
Euler

Pseudo Time
Stepping Other

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other
Krylov Subspace Methods

Matrices

PETSc Numerical Components

Distributed Arrays

Matrix-free

University of Chicago Department of Energy
127

PETSc code User code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Flow of Control for PDE
Solution

University of Chicago Department of Energy
128

Poisson Solver in PETSc
•  The following 7 slides show a complete 2-d

Poisson solver in PETSc. Features of this
solver:
♦  Fully parallel
♦  2-d decomposition of the 2-d mesh
♦  Linear system described as a sparse matrix; user can

select many different sparse data structures
♦  Linear system solved with any user-selected Krylov

iterative method and preconditioner provided by
PETSc, including GMRES with ILU, BiCGstab with
Additive Schwarz, etc.

♦  Complete performance analysis built-in

•  Only 7 slides of code!

/* -*- Mode: C; c-basic-offset:4 ; -*- */
#include <math.h>
#include "petscsles.h"
#include "petscda.h"
extern Mat FormLaplacianDA2d(DA, int);
extern Vec FormVecFromFunctionDA2d(DA, int, double (*)(double,double));
/* This function is used to define the right-hand side of the
 Poisson equation to be solved */
double func(double x, double y) {
 return sin(x*M_PI)*sin(y*M_PI); }

int main(int argc, char *argv[])
{
 SLES sles;
 Mat A;
 Vec b, x;
 DA grid;
 int its, n, px, py, worldSize;

 PetscInitialize(&argc, &argv, 0, 0);

Solve a Poisson Problem with Preconditioned GMRES

PETSC “objects” hide
details of distributed
data structures and
function parameters

 /* Get the mesh size. Use 10 by default */
 n = 10;
 PetscOptionsGetInt(PETSC_NULL, "-n", &n, 0);
 /* Get the process decomposition. Default it the same as without
 DAs */
 px = 1;
 PetscOptionsGetInt(PETSC_NULL, "-px", &px, 0);
 MPI_Comm_size(PETSC_COMM_WORLD, &worldSize);
 py = worldSize / px;

 /* Create a distributed array */
 DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,

 n, n, px, py, 1, 1, 0, 0, &grid);

 /* Form the matrix and the vector corresponding to the DA */
 A = FormLaplacianDA2d(grid, n);
 b = FormVecFromFunctionDA2d(grid, n, func);
 VecDuplicate(b, &x);

PETSc provides
routines to access
parameters and
defaults

PETSc provides
routines to create,
allocate, and
manage distributed
data structures

 SLESCreate(PETSC_COMM_WORLD, &sles);
 SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);
 SLESSetFromOptions(sles);
 SLESSolve(sles, b, x, &its);

 PetscPrintf(PETSC_COMM_WORLD, "Solution is:\n");
 VecView(x, PETSC_VIEWER_STDOUT_WORLD);
 PetscPrintf(PETSC_COMM_WORLD, "Required %d iterations\n", its);

 MatDestroy(A); VecDestroy(b); VecDestroy(x);
 SLESDestroy(sles); DADestroy(grid);
 PetscFinalize();
 return 0;
}

PETSc provides
routines that solve
systems of sparse
linear (and
nonlinear) equations

PETSc provides
coordinated I/O
(behavior is as-if a
single process),
including the output of
the distributed “vec”
object

/* -*- Mode: C; c-basic-offset:4 ; -*- */
#include "petsc.h"
#include "petscvec.h"
#include "petscda.h"

/* Form a vector based on a function for a 2-d regular mesh on the
 unit square */
Vec FormVecFromFunctionDA2d(DA grid, int n,
 double (*f)(double, double))
{
 Vec V;
 int is, ie, js, je, in, jn, i, j;
 double h;
 double **vval;

 h = 1.0 / (n + 1);
 DACreateGlobalVector(grid, &V);

 DAVecGetArray(grid, V, (void **)&vval);

/* Get global coordinates of this patch in the DA grid */
DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);
ie = is + in - 1;
je = js + jn - 1;

 for (i=is ; i<=ie ; i++) {

 for (j=js ; j<=je ; j++){
 vval[j][i] = (*f)((i + 1) * h, (j + 1) * h);
 }

 }
 DAVecRestoreArray(grid, V, (void **)&vval);

 return V;
}

Almost the uniprocess
code

/* -*- Mode: C; c-basic-offset:4 ; -*- */
#include "petscsles.h"
#include "petscda.h"

/* Form the matrix for the 5-point finite difference 2d Laplacian
 on the unit square. n is the number of interior points along a
 side */
Mat FormLaplacianDA2d(DA grid, int n)
{
 Mat A;
 int r, i, j, is, ie, js, je, in, jn, nelm;
 MatStencil cols[5], row;
 double h, oneByh2, vals[5];

 h = 1.0 / (n + 1); oneByh2 = 1.0 / (h*h);

 DAGetMatrix(grid, MATMPIAIJ, &A);
 /* Get global coordinates of this patch in the DA grid */
 DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);
 ie = is + in - 1;
 je = js + jn - 1;

Creating a Sparse Matrix, Distributed Across All Processes

Creates a parallel
distributed matrix using
compressed sparse row
format

for (i=is; i<=ie; i++) {
 for (j=js; j<=je; j++){
 row.j = j; row.i = i; nelm = 0;
 if (j - 1 > 0) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j - 1; cols[nelm++].i = i;}
 if (i - 1 > 0) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j; cols[nelm++].i = i - 1;}
 vals[nelm] = - 4 * oneByh2;
 cols[nelm].j = j; cols[nelm++].i = i;
 if (i + 1 < n - 1) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j; cols[nelm++].i = i + 1;}
 if (j + 1 < n - 1) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j + 1; cols[nelm++].i = i;}
 MatSetValuesStencil(A, 1, &row, nelm, cols, vals,

 INSERT_VALUES);
 }

 }

 MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
 MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

 return A;
}

Just the usual
code for setting
the elements of
the sparse matrix
(the complexity
comes, as it often
does, from the
boundary
conditions

University of Chicago Department of Energy
136

Full-Featured PDE Solver

• Command-line control of Krylov
iterative method (choice of
algorithms and parameters)

•  Integrated performance analysis
• Optimized parallel sparse-matrix

operations

• Question: How many MPI calls
used in example?

University of Chicago Department of Energy
137

•  -ksp_type [cg,gmres,bcgs,tfqmr,…]
•  -pc_type [lu,ilu,jacobi,sor,asm,…]

•  -ksp_max_it <max_iters>
•  -ksp_gmres_restart <restart>
•  -pc_asm_overlap <overlap>
•  -pc_asm_type [basic,restrict,interpolate,none]
•  etc ...

Setting Solver Options at
Runtime

University of Chicago Department of Energy
138

Other Libraries

•  Many libraries exist
♦  Freely available libraries

•  PETSc, ScaLAPACK, FFTW, HDF5, DOUG, GeoFEM,
MP_SOLVE, MpCCI, PARASOL, ParMETIS,
Prometheus, PSPASES, PLAPACK, S+, TCGMSG-MPI,
Trilinos, SPRNG, TAO, …

♦ Commercially supported libraries
•  E.g., NAG, IBM PESSL, IMSL, …

♦ More at www.mcs.anl.gov/mpi/libraries.html
•  These provide the building blocks for

building large, complex, and efficient
programs

University of Chicago Department of Energy
139

Some Final Comments

•  It isn’t how fast you can program
something easy

•  It is how fast you can program what
you need

•  Libraries give MPI an advantage over
other parallel programming models

•  Libraries provide a way to build custom
high-level programming environments
♦ Many exist — use them if possible
♦ Otherwise, create your own!

University of Chicago Department of Energy
140

Conclusion

•  MPI provides a well-developed, efficient and
portable model for programming parallel
computers

•  Just as important, MPI provides features that
enable and encourage the construction of
software components.

•  Parallel applications can often be quickly built
using these components

•  Even when no available component meets
your needs, using component-oriented design
can simplify the process of writing and
debugging an application with MPI.

