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Overview 

•  Introduction to MPI 
♦  What it is 
♦  Where it came from 
♦  Basic MPI communication 

•  Some simple examples 
♦  More advanced MPI communication 
♦  A non-trivial exercise 
♦  Looking to the future: some features from MPI-2 

•  Building programs using MPI libraries 
♦  PETSc 

•  Poisson solver with no MPI 
♦  pnetCDF 

•  High performance parallel I/O 
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Models for Parallel 
Computation 

•  Shared memory (load, store, lock, 
unlock) 

•  Message Passing (send, receive, 
broadcast, ...) 

•  Transparent (compiler works magic) 
•  Directive-based (compiler needs help) 
•  Others (BSP, OpenMP, ...) 
•  Task farming (scientific term for large 

transaction processing) 
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Why Yet Another Parallel 
Programming Approach? 

•  Distributed memory (shared nothing) 
systems 
♦ Common, easier to build, dominate high-

end computing (over 329 of top 500; all 
1998 Gordon Bell Prize finalists; most 
highest-performing applications) 

•  Performance depends on managing 
memory use 
♦ Goal of many parallel programming models 

is to simplify programming by hiding details 
of memory locality and management 
(parallel programming for the masses) 

•  Support for modular programming 
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Message Passing Features  

•  Parallel programs consist of separate 
processes, each with its own address space 
♦  Programmer manages memory by placing data in a 

particular process 
•  Data sent explicitly between processes 

♦  Programmer manages memory motion 

•  Collective operations 
♦  On arbitrary set of processes 

•  Data distribution 
♦  Also managed by programmer 

•  Message passing model doesn’t get in the way 
•  It doesn’t help either 
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Types of  
Parallel Computing Models 

•  Data Parallel - the same instructions are 
carried out simultaneously on multiple data 
items (SIMD) 

•  Task Parallel - different instructions on 
different data (MIMD) 

•  SPMD (single program, multiple data) not 
synchronized at individual operation level 

•  SPMD is equivalent to MIMD since each MIMD 
program can be made SPMD (similarly for 
SIMD, but not in practical sense.) 

Message passing (and MPI) is for MIMD/SPMD 
parallelism.  HPF is an example of an SIMD 
interface. 
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Comparison with Other 
Models 

•  Single process (address space) model 
♦ OpenMP and threads in general 
♦  Fortran 90/95 and compiler-discovered 

parallelism 
♦ System manages memory and (usually) 

thread scheduling 
♦ Named variables refer to the same storage  

•  Single name space model 
♦ HPF 
♦ Data distribution part of the language, but 

programs still written as if there is a single 
name space 
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The Distributed Memory or 
“Shared-Nothing” Model 

•  Integer A(10) 
 
 
… 
print *, A 

A(10) 

A(10) 

•  Integer A(10) 
do i=1,10 
  A(i) = i 
enddo 
... 

Process 0 Process 1 

Different Variables! 

Address 
Space 
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The Message-Passing Model 

•  A process is (traditionally) a program 
counter and address space 

•  Processes may have multiple threads 
(program counters and associated 
stacks) sharing a single address space 

•  Message passing is for communication 
among processes, which have separate 
address spaces 

•  Interprocess communication consists of  
♦  synchronization 
♦ movement of data from one process’s 

address space to another’s 
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What is MPI? 

•  A message-passing library specification 
♦  extended message-passing model 
♦ not a language or compiler specification 
♦ not a specific implementation or product 

•  For parallel computers, clusters, and 
heterogeneous networks 

•  Full-featured 
•  Designed to provide access to advanced 

parallel hardware for end users, library 
writers, and tool developers 
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Where Did MPI Come From? 

•  Early vendor systems (Intel’s NX, IBM’s EUI, 
TMC’s CMMD) were not portable (or very 
capable) 

•  Early portable systems (PVM, p4, TCGMSG, 
Chameleon) were mainly research efforts 
♦  Did not address the full spectrum of issues 
♦  Lacked vendor support 
♦  Were not implemented at the most efficient level 

•  The MPI Forum organized in 1992 with broad 
participation by: 
♦  vendors:  IBM, Intel, TMC, SGI, Convex, Meiko 
♦  portability library writers:  PVM, p4 
♦  users:  application scientists and library writers 
♦  finished in 18 months 
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Novel Features of MPI 

•  Communicators encapsulate communication 
spaces for library safety 

•  Datatypes reduce copying costs and permit 
heterogeneity 

•  Multiple communication modes allow precise 
buffer management 

•  Extensive collective operations for scalable 
global communication 

•  Process topologies permit efficient process 
placement, user views of process layout 

•  Profiling interface encourages portable tools 
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MPI References 

• The Standard itself: 
♦ at http://www.mpi-forum.org 
♦ All MPI official releases, in both 

postscript and HTML 
• Other information on Web: 

♦ at http://www.mcs.anl.gov/mpi 
♦ pointers to lots of stuff, including 

other talks and tutorials, a FAQ, other 
MPI pages 
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Books on MPI 

•  Using MPI:  Portable Parallel Programming  
with the Message-Passing Interface (2nd edition),  
by Gropp, Lusk, and Skjellum, MIT Press,  
1999. 

•  Using MPI-2:  Portable Parallel Programming  
with the Message-Passing Interface, by Gropp,  
Lusk, and Thakur, MIT Press, 1999. 

•  MPI:  The Complete Reference - Vol 1 The MPI Core, by 
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT 
Press, 1998. 

•  MPI: The Complete Reference - Vol 2 The MPI Extensions, 
by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg, 
Saphir, and Snir, MIT Press, 1998. 

•  Designing and Building Parallel Programs, by Ian Foster, 
Addison-Wesley, 1995. 

•  Parallel Programming with MPI, by Peter Pacheco, 
Morgan-Kaufmann, 1997. 
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Programming With MPI 

•  MPI is a library 
♦ All operations are performed with routine 

calls 
♦ Basic definitions in  

• mpi.h for C 
• mpif.h for Fortran 77 and 90 
• MPI module for Fortran 90 (optional) 

•  First Program: 
♦ Create 4 processes in a simple MPI job 
♦ Write out process number  
♦ Write out some variables (illustrate separate 

name space) 
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Finding Out About the 
Environment 

•  Two important questions that arise early 
in a parallel program are: 
♦ How many processes are participating 

in this computation? 
♦ Which one am I? 

•  MPI provides functions to answer these 
questions: 
♦ MPI_Comm_size reports the number of 

processes. 
♦ MPI_Comm_rank reports the rank, a number 

between 0 and size-1, identifying the calling 
process 
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Hello (C) 
#include "mpi.h" 
#include <stdio.h> 
 
int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
} 
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Hello (Fortran) 

program main 
include 'mpif.h' 
integer ierr, rank, size 
 
call MPI_INIT( ierr ) 
call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr ) 
call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr ) 
print *, 'I am ', rank, ' of ', size 
call MPI_FINALIZE( ierr ) 
end 
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Hello (C++) 
#include "mpi.h" 
#include <iostream> 
 
int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI::Init(argc, argv); 
    rank = MPI::COMM_WORLD.Get_rank(); 
    size = MPI::COMM_WORLD.Get_size(); 
    std::cout << "I am " << rank << " of " << size << 

   "\n"; 
    MPI::Finalize(); 
    return 0; 
} 
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Notes on Hello World 

•  All MPI programs begin with MPI_Init and end 
with MPI_Finalize 

•  MPI_COMM_WORLD is defined by mpi.h (in C) 
or mpif.h (in Fortran) and designates all 
processes in the MPI “job” 

•  Each statement executes independently in 
each process 
♦  including the printf/print statements 

•  I/O not part of MPI-1 
♦  print and write to standard output or error not part 

of either MPI-1 or MPI-2 
♦  output order is undefined (may be interleaved by 

character, line, or blocks of characters), 
•  A consequence of the requirement that non-MPI 

statements execute independently 
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Running MPI Programs 

•  The MPI-1 Standard does not specify how to run an MPI program, just 
as the Fortran standard does not specify how to run a Fortran 
program. 
♦  Many implementations provided  

mpirun –np 4 a.out 
to run an MPI program 

•  In general, starting an MPI program is dependent on the 
implementation of MPI you are using, and might require various 
scripts, program arguments, and/or environment variables. 

•  mpiexec <args>  is part of MPI-2, as a recommendation, but not a 
requirement, for implementors. 

•  Many parallel systems use a batch environment to share resources 
among users 
♦  The specific commands to run a program on a parallel system are 

defined by the environment installed on the parallel computer 
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MPI Basic Send/Receive 

•  We need to fill in the details in 

•  Things that need specifying: 
♦ How will “data” be described? 
♦ How will processes be identified? 
♦ How will the receiver recognize/screen 

messages? 
♦ What will it mean for these operations to 

complete? 

Process 0 Process 1 

Send(data) 
Receive(data) 
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Some Basic Concepts 

•  Processes can be collected into groups 
•  Each message is sent in a context, and 

must be received in the same context 
♦ Provides necessary support for libraries 

•  A group and context together form a 
communicator 

•  A process is identified by its rank in the 
group associated with a communicator 

•  There is a default communicator whose 
group contains all initial processes, 
called MPI_COMM_WORLD 
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MPI Datatypes 

•  The data in a message to send or receive is 
described by a triple (address, count, 
datatype), where 

•  An MPI datatype is recursively defined as: 
♦  predefined, corresponding to a data type from the 

language (e.g., MPI_INT, MPI_DOUBLE) 
♦  a contiguous array of MPI datatypes 
♦  a strided block of datatypes 
♦  an indexed array of blocks of datatypes 
♦  an arbitrary structure of datatypes 

•  There are MPI functions to construct custom 
datatypes, in particular ones for subarrays 
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MPI Tags 

•  Messages are sent with an 
accompanying user-defined integer tag, 
to assist the receiving process in 
identifying the message 

•  Messages can be screened at the 
receiving end by specifying a specific 
tag, or not screened by specifying 
MPI_ANY_TAG as the tag in a receive 

•  Some non-MPI message-passing 
systems have called tags “message 
types”.  MPI calls them tags to avoid 
confusion with datatypes 
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MPI Basic (Blocking) Send 

MPI_SEND(start, count, datatype, dest, tag, comm) 
 
•  The message buffer is described by (start, 
count, datatype). 

•  The target process is specified by dest, 
which is the rank of the target process in 
the communicator specified by comm. 

•  When this function returns, the data has 
been delivered to the system and the buffer 
can be reused.  The message may not have 
been received by the target process. 
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MPI Basic (Blocking) Receive 

MPI_RECV(start, count, datatype, source, tag, comm, status) 
 
•  Waits until a matching (both source and tag) message is 

received from the system, and the buffer can be used 
•  source is rank in communicator specified by comm, or 

MPI_ANY_SOURCE 

•  tag is a tag to be matched on or MPI_ANY_TAG 
•  receiving fewer than count occurrences of datatype is OK, 

but receiving more is an error 
•  status contains further information (e.g. size of message) 
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Send-Receive Summary 

•  Send to matching Receive 

•  Datatype 
♦  Basic for heterogeneity 
♦  Derived for non-contiguous 

•  Contexts 
♦  Message safety for libraries 

•  Buffering 
♦  Robustness and correctness 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 
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A Simple MPI Program 
#include “mpi.h” 
#include <stdio.h> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI_Status status; 
  MPI_Init(&argv, &argc);    
  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
 
  /* Process 0 sends and Process 1 receives */ 
  if (rank == 0) { 
    buf = 123456; 
    MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); 
  } 
  else if (rank == 1) { 
    MPI_Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,  
              &status ); 
    printf( “Received %d\n”, buf ); 
  } 
 
  MPI_Finalize(); 
  return 0; 
} 



University of Chicago Department of Energy 
30 

A Simple MPI Program 
(Fortran) 

     program main 
     include ‘mpif.h’ 
     integer rank, buf, ierr, status(MPI_STATUS_SIZE) 
      
     call MPI_Init(ierr)  
     call MPI_Comm_rank( MPI_COMM_WORLD, rank, ierr ) 
C Process 0 sends and Process 1 receives  
     if (rank .eq. 0) then 
        buf = 123456 
        call MPI_Send( buf, 1, MPI_INTEGER, 1, 0,  
    *                  MPI_COMM_WORLD, ierr ) 
     else if (rank .eq. 1) then 
        call MPI_Recv( buf, 1, MPI_INTEGER, 0, 0, 
    *                  MPI_COMM_WORLD, status, ierr ) 
        print *, “Received “, buf 
     endif 
     call MPI_Finalize(ierr) 
     end 
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A Simple MPI Program (C++) 
#include “mpi.h” 
#include <iostream> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI::Init(argv, argc); 
  rank = MPI::COMM_WORLD.Get_rank(); 
 
  // Process 0 sends and Process 1 receives  
  if (rank == 0) { 
    buf = 123456; 
    MPI::COMM_WORLD.Send( &buf, 1, MPI::INT, 1, 0 ); 
  } 
  else if (rank == 1) { 
    MPI::COMM_WORLD.Recv( &buf, 1, MPI::INT, 0, 0 ); 
    std::cout << “Received “ << buf << “\n”; 
  } 
 
  MPI::Finalize(); 
  return 0; 
} 



University of Chicago Department of Energy 
32 

Retrieving Further 
Information 

•  Status is a data structure allocated in the user’s program. 
•  In C: 

int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 
recvd_tag  = status.MPI_TAG; 
recvd_from = status.MPI_SOURCE; 
MPI_Get_count( &status, datatype, &recvd_count ); 

•  In Fortran: 
integer recvd_tag, recvd_from, recvd_count 
integer status(MPI_STATUS_SIZE) 
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr) 
tag_recvd  = status(MPI_TAG) 

recvd_from = status(MPI_SOURCE) 
call MPI_GET_COUNT(status, datatype, recvd_count, ierr) 
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Retrieving Further 
Information 

•  Status is a data structure allocated in the user’s 
program. 

•  In C++: 
int recvd_tag, recvd_from, recvd_count; 
MPI::Status status; 
Comm.Recv(..., MPI::ANY_SOURCE, MPI::ANY_TAG, ...,  

        status ) 
recvd_tag   = status.Get_tag(); 
recvd_from  = status.Get_source(); 
recvd_count = status.Get_count( datatype ); 
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Tags and Contexts 

•  Separation of messages used to be 
accomplished by use of tags, but 
♦  this requires libraries to be aware of tags used by 

other libraries. 
♦  this can be defeated by use of “wild card” tags. 

•  Contexts are different from tags 
♦  no wild cards allowed 
♦  allocated dynamically by the system when a library 

sets up a communicator for its own use. 
•  User-defined tags still provided in MPI for user 

convenience in organizing application 
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Running MPI Programs 

•  The MPI-1 Standard does not specify how to run an MPI 
program, just as the Fortran standard does not specify how to 
run a Fortran program. 

•  In general, starting an MPI program is dependent on the 
implementation of MPI you are using, and might require 
various scripts, program arguments, and/or environment 
variables. 

•  mpiexec <args>  is part of MPI-2, as a recommendation, but 
not a requirement, for implementors. 

•  Use  
    mpirun –np # -nolocal a.out 
for your clusters, e.g. 
    mpirun –np 3 –nolocal cpi 
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MPI is Simple 

•  Many parallel programs can be written 
using just these six functions, only two 
of which are non-trivial: 
♦ MPI_INIT 

♦ MPI_FINALIZE 

♦ MPI_COMM_SIZE 

♦ MPI_COMM_RANK 

♦ MPI_SEND 

♦ MPI_RECV 
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Another Approach to 
Parallelism 

• Collective routines provide a 
higher-level way to organize a 
parallel program 

• Each process executes the same 
communication operations 

• MPI provides a rich set of collective 
operations… 
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Collective Operations in MPI 
•  Collective operations are called by all 

processes in a communicator 
•  MPI_BCAST distributes data from one 

process (the root) to all others in a 
communicator 

•  MPI_REDUCE combines data from all 
processes in communicator and returns 
it to one process 

•  In many numerical algorithms, SEND/
RECEIVE can be replaced by BCAST/
REDUCE, improving both simplicity and 
efficiency 
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Example:  PI in C - 1 
#include "mpi.h" 
#include <math.h> 

#include <stdio.h> 
int main(int argc, char *argv[]) 
{ 

int done = 0, n, myid, numprocs, i, rc; 
double PI25DT = 3.141592653589793238462643; 
double mypi, pi, h, sum, x, a; 
MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
while (!done)  { 
  if (myid == 0) { 
    printf("Enter the number of intervals: (0 quits) "); 
    scanf("%d",&n); 
  } 
  MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
  if (n == 0) break; 
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Example:  PI in C - 2 
    h   = 1.0 / (double) n; 

  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = h * sum; 
  MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
  if (myid == 0) 
    printf("pi is approximately %.16f, Error is .16f\n", 
            pi, fabs(pi - PI25DT)); 
} 
MPI_Finalize(); 

  return 0; 
} 
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Example:  PI in Fortran - 1 
     program main 
     include ‘mpif.h’  
     integer done, n, myid, numprocs, i, rc 
     double pi25dt, mypi, pi, h, sum, x, z 
     data done/.false./ 
     data PI25DT/3.141592653589793238462643/ 
     call MPI_Init(ierr) 
     call MPI_Comm_size(MPI_COMM_WORLD,numprocs, ierr ) 
     call MPI_Comm_rank(MPI_COMM_WORLD,myid, ierr) 
     do while (.not. done) 
       if (myid .eq. 0) then 
        print *,”Enter the number of intervals: (0 quits)“ 
        read *, n 
       endif 
       call MPI_Bcast(n, 1, MPI_INTEGER, 0, 
   *                   MPI_COMM_WORLD, ierr ) 
       if (n .eq. 0) goto 10 
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Example:  PI in Fortran - 2 
        h   = 1.0 / n 

    sum = 0.0 
        do i=myid+1,n,numprocs 
          x = h * (i - 0.5) 

      sum += 4.0 / (1.0 + x*x) 
    enddo 
    mypi = h * sum 
    call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE_PRECISION, 
   *                MPI_SUM, 0, MPI_COMM_WORLD, ierr ) 
    if (myid .eq. 0) then 
        print *, "pi is approximately “, pi,  
   *      “, Error is “, abs(pi - PI25DT) 

    enddo 
10   continue 

    call MPI_Finalize( ierr ) 
    end 
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Example:  PI in C++ - 1 
#include "mpi.h" 
#include <math.h> 
#include <iostream> 
int main(int argc, char *argv[]) 
{ 
  int done = 0, n, myid, numprocs, i, rc; 
  double PI25DT = 3.141592653589793238462643; 
  double mypi, pi, h, sum, x, a; 
  MPI::Init(argc, argv); 
  numprocs = MPI::COMM_WORLD.Get_size(); 
  myid     = MPI::COMM_WORLD.Get_rank(); 
  while (!done)  { 
    if (myid == 0) { 
      std::cout << "Enter the number of intervals: (0 quits) "; 
      std::cin >> n;; 
    } 
    MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0 ); 
    if (n == 0) break; 
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Example:  PI in C++ - 2 
     h   = 1.0 / (double) n; 

  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = h * sum; 
  MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI::DOUBLE,  
                        MPI::SUM, 0); 
  if (myid == 0) 
    std::cout << "pi is approximately “ << pi <<  
          “, Error is “ << fabs(pi - PI25DT) << “\n”; 
} 
MPI::Finalize(); 

  return 0; 
} 
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Notes on C and Fortran 

•  C and Fortran bindings correspond closely 
•  In C: 

♦  mpi.h must be #included 
♦  MPI functions return error codes or MPI_SUCCESS 

•  In Fortran: 
♦  mpif.h must be included, or use MPI module  
♦  All MPI calls are to subroutines, with a place for the 

return code in the last argument. 

•  C++ bindings, and Fortran-90 issues, are part of 
MPI-2. 
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Alternative Set of 6 Functions 

• Using collectives: 
♦ MPI_INIT 

♦ MPI_FINALIZE 

♦ MPI_COMM_SIZE 

♦ MPI_COMM_RANK 

♦ MPI_BCAST 

♦ MPI_REDUCE 
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More on Message Passing 

• Message passing is a simple 
programming model, but there are 
some special issues 
♦ Buffering and deadlock 
♦ Deterministic execution 
♦ Performance  
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Buffers 

•  When you send data, where does it go?  
One possibility is: 

Process 0 Process 1 

User data 

Local buffer 

the network 

User data 

Local buffer 
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Avoiding Buffering 

•  It is better to avoid copies: 

This requires that MPI_Send wait on delivery, or 
that MPI_Send return before transfer is complete, 
and we wait later. 

Process 0 Process 1 

User data 

User data 

the network 
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Blocking and Non-blocking 
Communication 

• So far we have been using 
blocking communication: 
♦ MPI_Recv does not complete until the 

buffer is full (available for use). 
♦ MPI_Send does not complete until the 

buffer is empty (available for use). 
• Completion depends on size of 

message and amount of system 
buffering. 
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•  Send a large message from process 0 to 
process 1 
♦  If there is insufficient storage at the destination, the 

send must wait for the user to provide the memory 
space (through a receive) 

•  What happens with this code? 
 
 
 
 

Sources of Deadlocks 

Process 0 
 
Send(1) 
Recv(1) 

Process 1 
 
Send(0) 
Recv(0) 

•  This is called “unsafe” because it depends on 
the availability of system buffers in which to 
store the data sent until it can be received  
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Some Solutions to the “unsafe” 
Problem 

•  Order the operations more carefully: 

•  Supply receive buffer at same time as send: 

Process 0 
 
Send(1) 
Recv(1) 

Process 1 
 
Recv(0) 
Send(0) 

Process 0 
 
Sendrecv(1) 

Process 1 
 
Sendrecv(0) 
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More Solutions to the “unsafe” 
Problem 

•  Supply own space as buffer for send 

•  Use non-blocking operations: 

Process 0 
 
Bsend(1) 
Recv(1) 

Process 1 
 
Bsend(0) 
Recv(0) 

Process 0 
 
Isend(1) 
Irecv(1) 
Waitall 

Process 1 
 
Isend(0) 
Irecv(0) 
Waitall 
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MPI’s Non-blocking 
Operations 

•  Non-blocking operations return 
(immediately) “request handles” that 
can be tested and waited on: 
MPI_Request request; 
MPI_Status status; 

  MPI_Isend(start, count, datatype, 
    dest, tag, comm, &request); 

  MPI_Irecv(start, count, datatype, 
    dest, tag, comm, &request); 

  MPI_Wait(&request, &status); 
(each request must be Waited on) 

•  One can also test without waiting: 
  MPI_Test(&request, &flag, &status); 
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MPI’s Non-blocking Operations 
(Fortran) 

•  Non-blocking operations return 
(immediately) “request handles” that can 
be tested and waited on: 
integer request 
integer status(MPI_STATUS_SIZE) 

  call MPI_Isend(start, count, datatype, 
    dest, tag, comm, request,ierr) 

  call MPI_Irecv(start, count, datatype, 
    dest, tag, comm, request, ierr) 

  call MPI_Wait(request, status, ierr) 
(Each request must be waited on) 

•  One can also test without waiting: 
  call MPI_Test(request, flag, status, ierr) 
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MPI’s Non-blocking 
Operations (C++) 

•  Non-blocking operations return 
(immediately) “request handles” that 
can be tested and waited on: 
MPI::Request request; 
MPI::Status  status; 

  request = comm.Isend(start, count, 
                  datatype, dest, tag); 

  request = comm.Irecv(start, count, 
                  datatype, dest, tag); 

  request.Wait(status); 
(each request must be Waited on) 

•  One can also test without waiting: 
  flag = request.Test( status ); 



University of Chicago Department of Energy 
57 

Multiple Completions 

•  It is sometimes desirable to wait on multiple 
requests: 

 MPI_Waitall(count, array_of_requests, 
 array_of_statuses) 

 MPI_Waitany(count, array_of_requests, 
 &index, &status) 

 MPI_Waitsome(count, array_of_requests, 
 array_of indices, array_of_statuses) 

•  There are corresponding versions of test 
for each of these. 
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Multiple Completions 
(Fortran) 

•  It is sometimes desirable to wait on multiple 
requests: 

 call MPI_Waitall(count, array_of_requests, 
 array_of_statuses, ierr) 

 call MPI_Waitany(count, array_of_requests, 
 index, status, ierr) 

 call MPI_Waitsome(count, array_of_requests, 
 array_of indices, array_of_statuses, ierr) 

•  There are corresponding versions of test 
for each of these. 
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Communication Modes 

•  MPI provides multiple modes for sending 
messages: 
♦  Synchronous mode (MPI_Ssend):  the send does not 

complete until a matching receive has begun.  
(Unsafe programs deadlock.) 

♦  Buffered mode (MPI_Bsend):  the user supplies a 
buffer to the system for its use.  (User allocates 
enough memory to make an unsafe program safe. 

♦  Ready mode (MPI_Rsend):  user guarantees that a 
matching receive has been posted. 

•  Allows access to fast protocols 
•  undefined behavior if matching receive not posted 

•  Non-blocking versions (MPI_Issend, etc.) 
•  MPI_Recv receives messages sent in any 

mode. 
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Other Point-to Point Features 

• MPI_Sendrecv 
• MPI_Sendrecv_replace 
• MPI_Cancel 

♦ Useful for multibuffering 
• Persistent requests 

♦ Useful for repeated communication 
patterns 

♦ Some systems can exploit to reduce 
latency and increase performance 
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MPI_Sendrecv 

•  Allows simultaneous send and receive 
•  Everything else is general.  

♦ Send and receive datatypes (even type 
signatures) may be different 

♦ Can use Sendrecv with plain Send or Recv 
(or Irecv or Ssend_init, …) 

♦ More general than “send left” 
Process 0 
 
SendRecv(1) 

Process 1 
 
SendRecv(0) 
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MPI Collective 
Communication 

•  Communication and computation is 
coordinated among a group of processes in a 
communicator. 

•  Groups and communicators can be constructed 
“by hand” or using topology routines. 

•  Tags are not used; different communicators 
deliver similar functionality. 

•  No non-blocking collective operations. 
•  Three classes of operations: synchronization, 

data movement, collective computation. 
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Synchronization 

• MPI_Barrier( comm ) 
• Blocks until all processes in the 

group of the communicator comm 
call it. 

• Almost never required in a parallel 
program 
♦ Occasionally useful in measuring 

performance and load balancing 
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Synchronization (Fortran) 

• MPI_Barrier( comm, ierr ) 
• Blocks until all processes in the 

group of the communicator comm 
call it. 
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Synchronization (C++) 

• comm.Barrier(); 
• Blocks until all processes in the 

group of the communicator comm 
call it. 
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Collective Data Movement 

A 
B 

D 
C 

B C D 

A 
A 

A 
A 

Broadcast 

Scatter 

Gather 

A 

A 

P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 
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Comments on Broadcast 

•  All collective operations must be called by all 
processes in the communicator 

•  MPI_Bcast is called by both the sender (called 
the root process) and the processes that are 
to receive the broadcast 
♦  MPI_Bcast is not a “multi-send” 
♦  “root” argument is the rank of the sender; this tells 

MPI which process originates the broadcast and 
which receive 

•  Example of orthogonallity of the MPI design: 
MPI_Recv need not test for “multisend” 
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More Collective Data 
Movement 

A 
B 

D 
C 

A0 B0 C0 D0 

A1 B1 C1 D1 

A3 B3 C3 D3 

A2 B2 C2 D2 

A0 A1 A2 A3 
B0 B1 B2 B3 

D0 D1 D2 D3 

C0 C1 C2 C3 

A B C D 
A B C D 

A B C D 
A B C D 

Allgather 

Alltoall 

P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 
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Collective Computation 

P0 
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MPI Collective Routines 

•  Many Routines:  Allgather, Allgatherv, Allreduce, 
Alltoall, Alltoallv, Bcast, Gather, Gatherv, 
Reduce, Reduce_scatter, Scan, Scatter, Scatterv 

•  All versions deliver results to all participating 
processes. 

•  V versions allow the hunks to have different sizes. 
•  Allreduce, Reduce, Reduce_scatter, and Scan take 

both built-in and user-defined combiner functions. 
•  MPI-2 adds Alltoallw, Exscan, intercommunicator 

versions of most routines 
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MPI Built-in Collective 
Computation Operations 

•  MPI_MAX 
•  MPI_MIN 
•  MPI_PROD 
•  MPI_SUM 
•  MPI_LAND 
•  MPI_LOR 
•  MPI_LXOR 
•  MPI_BAND 
•  MPI_BOR 
•  MPI_BXOR 
•  MPI_MAXLOC 
•  MPI_MINLOC 

Maximum 
Minimum 
Product 
Sum 
Logical and 
Logical or 
Logical exclusive or 
Binary and 
Binary or 
Binary exclusive or 
Maximum and location 
Minimum and location 
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The Collective Programming 
Model 

• One style of higher level 
programming is to use only 
collective routines 

• Provides a “data parallel” style of 
programming 
♦ Easy to follow program flow  
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What MPI Functions 
are in Use? 

•  For simple applications, these are 
common: 
♦ Point-to-point communication 

• MPI_Irecv, MPI_Isend, MPI_Wait, MPI_Send, 
MPI_Recv 

♦ Startup 
• MPI_Init, MPI_Finalize 

♦  Information on the processes  
• MPI_Comm_rank, MPI_Comm_size, 

MPI_Get_processor_name 

♦ Collective communication 
• MPI_Allreduce, MPI_Bcast, MPI_Allgather 
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Understanding and Predicting 
Performance 

•  Not all programs will run faster in 
parallel 
♦ The benefit of additional processors may be 

outweighed by the cost of moving data 
between them 

•  A typical cost model is 

fraction parallel
fraction le)parallizab-(non serial 

overheadion communicat

=

=

=

++=

p

s

c

cs
p

T
T
T

TT
p
T

T This term is zero for p=1 
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Latency and Bandwidth 

•  Simplest model s + r n 
•  s includes both hardware (gate delays) 

and software (context switch, setup) 
•  r includes both hardware (raw 

bandwidth of interconnection and 
memory system) and software 
(packetization, copies between user and 
system) 

•  Head-to-head and pingpong values may 
differ 
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•  Bandwidth is the inverse of the slope of the line  
time = latency + (1/rate) size_of_message 

•  For performance estimation purposes, latency is the 
limit(n→0) of the time to send n bytes 

•  Latency is sometimes described as “time to send a 
message of zero bytes”.  This is true only for the simple 
model.  The number quoted is sometimes misleading. 

Interpreting Latency and 
Bandwidth 

Latency 

1/slope=Bandwidth 

Message Size 

Time 
to Send 
Message 

Not latency 
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Timing MPI Programs (C) 

•  The elapsed (wall-clock) time between two 
points in an MPI program can be computed 
using MPI_Wtime: 
     double t1, t2; 
   t1 = MPI_Wtime(); 
   ... 
   t2 = MPI_Wtime(); 
   printf( “time is %f\n”, t2 - t1 ); 

•  The value returned by a single call to 
MPI_Wtime has little value. 

•  Times in general are local, but an 
implementation might offer synchronized 
times.  See attribute MPI_WTIME_IS_GLOBAL. 
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Timing MPI Programs 
(Fortran) 

•  The elapsed (wall-clock) time between two 
points in an MPI program can be computed 
using MPI_Wtime: 
    double precision t1, t2 
   t1 = MPI_Wtime() 
   ... 
   t2 = MPI_Wtime() 
   print *, ‘time is ‘, t2 - t1 

•  The value returned by a single call to 
MPI_Wtime has little value. 

•  Times in general are local, but an 
implementation might offer synchronized 
times.  See attribute MPI_WTIME_IS_GLOBAL. 
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Measuring Performance 

•  Using MPI_Wtime 
♦  timers are not continuous — use MPI_Wtick to find 

resolution 
•  MPI_Wtime is local unless the 

MPI_WTIME_IS_GLOBAL attribute is true  
♦  MPI attributes are an advanced topic – ask me 

afterwards if you are interested 
•  MPI Profiling interface provides a way to easily 

instrument the MPI calls in an application 
•  Many performance measurement tools exist 

for MPI programs — take advantage of them 
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Performance Visualization with Jumpshot 

•  For detailed analysis of parallel program 
behavior, timestamped events are 
collected into a log file during the run. 

•  A separate display program (Jumpshot) 
aids the user in conducting a post  
mortem analysis of program behavior. 

Logfile 

Jumpshot 

Processes 

Display 
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Using Jumpshot to look at FLASH at 
multiple Scales 

Each line represents 
1000’s of messages Detailed view shows opportunities for 

optimization 

1000 x 
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Implementing Master/Worker 
Algorithms 

• Many algorithms have one or more 
master processes that send tasks 
and receive results from worker 
processes 

• Because there is one (or a few) 
controlling processes, the master 
can become a bottleneck 
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Skeleton Master Process 

•  do while(.not. Done) 
  ! Get results from anyone 
  call MPI_Recv( a,…, status, ierr ) 
  ! If this is the last data item,  
  ! set done  to .true.  
  ! Else send more work to them 
  call MPI_Send(b,…,status(MPI_SOURCE),& 
                   … , ierr ) 
enddo 

• Not included: 
♦ Sending initial work to all processes 
♦ Deciding when to set done 
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Skeleton Worker Process 

•  Do while (.not. Done) 
  ! Receive work from master 
  call MPI_Recv( a, …, status, ierr ) 
  … compute for task 
  ! Return result to master 
  call MPI_Send( b, …, ierr ) 
enddo 

•  Not included: 
♦ Detection of termination (probably message 

from master) 
♦ An alternative would be a test for a nonblocking 

barrier (which MPI doesn’t have) 
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Problems With Master/
Worker 

•  Worker processes have nothing to do 
while waiting for the next task 

•  Many workers may try to send data to 
the master at the same time 
♦ Could be a problem if data size is very 

large, such as 20-100 MB 
•  Master may fall behind in servicing 

requests for work if many processes ask 
in a very short interval 

•  Presented with many requests, master 
may not evenly respond  
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Spreading out 
communication 

•  Use double buffering to overlap request for more 
work with work 
Do while (.not. Done) 
    ! Receive work from master 
    call MPI_Wait( request, status, ierr ) 
    ! Request MORE work 
    call MPI_Send( …, send_work, …, ierr ) 
    call MPI_IRecv( a2, …, request, ierr ) 
    … compute for task 
    ! Return result to master (could also be nb) 
    call MPI_Send( b, …, ierr ) 
enddo 

•  MPI_Cancel 
♦  Last Irecv may never match; remove it with MPI_Cancel 
♦  You must still complete the request with MPI_Test or 

MPI_Wait, or MPI_Request_free. 
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Limiting Memory Demands 
on Master 

•  Using MPI_Ssend and MPI_Issend to 
encourage limits on memory demands 
♦ MPI_Ssend and MPI_Issend do not specify 

that the data itself doesn’t move until the 
matching receive is issued, but that is the 
easiest (and most common) way to 
implement the synchronous send operations 

♦ Replace MPI_Send in worker with  
• MPI_Ssend for blocking 
• MPI_Issend for nonblocking (even less 

synchronization) 
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Distributing work further 

• Use multiple masters, workers 
select a master to request work 
from at random 

• Keep more work locally 
• Use threads to implement work 

stealing (but you must be use a 
thread-safe implementation of 
MPI) 
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Mesh-Based Computations in 
MPI 

•  First step: decompose the problem 
•  Second step: arrange for the 

communication of data 
•  Example: “Jacobi” iteration 

♦ Represents the communication in many 
mesh-based computations 

♦ Not a good algorithm (we’ll see better ways 
later) 

♦ Not the best decomposition (more scalable 
decompositions are more complex to 
program — unless you use higher-level 
libraries) 
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Jacobi Iteration 
(Fortran Ordering) 

•  Simple parallel data structure 

•  Processes exchange columns with neighbors 
•  Local part declared as xlocal(m,0:n+1) 

Process 0 Process 1 Process 2 Process 3 

Boundary Point 

Interior Node 

m 

n 
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Send and Recv (Fortran) 

•  Simplest use of send and recv 
integer status(MPI_STATUS_SIZE) 
 
call MPI_Send( xlocal(1,1), m, MPI_DOUBLE_PRECISION, & 
                          left_nbr, 0, ring_comm, ierr ) 
call MPI_Recv( xlocal(1,0), m, MPI_DOUBLE_PRECISION, & 
                          right_nbr, 0, ring_comm, status, ierr ) 
call MPI_Send( xlocal(1,n), m, MPI_DOUBLE_PRECISION, & 
                          right_nbr, 0, ring_comm, ierr ) 
call MPI_Recv( xlocal(1,n+1), m, MPI_DOUBLE_PRECISION, & 
                           left_nbr, 0, ring_comm, status, ierr ) 
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Performance of Simplest 
Code 

• Very poor performance on SP2 
♦ Rendezvous sequentializes 
sends/receives 

• OK performance on T3D 
(implementation tends to 
buffer operations) 
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Better to start receives first 
(Fortran) 

•  Irecv, Isend, Waitall - ok performance 
integer statuses(MPI_STATUS_SIZE,4), requests(4) 
 
call MPI_Irecv( xlocal(1,0), m, MPI_DOUBLE_PRECISION,& 
                           left_nbr, ring_comm, requests(2), ierr ) 
call MPI_Irecv( xlocal(1,n+1), m, MPI_DOUBLE_PRECISION,& 
                           right_nbr, ring_comm, requests(4), ierr ) 
call MPI_Isend( xlocal(1,n), m, MPI_DOUBLE_PRECISION, & 
                           right_nbr, ring_comm, requests(1), ierr ) 
call MPI_Isend( xlocal(1,1), m, MPI_DOUBLE_PRECISION, & 
                           left_nbr, ring_comm, requests(3), ierr ) 
call MPI_Waitall( 4, requests, statuses, ierr ) 
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MPI and Threads 

• Symmetric Multiprocessors (SMPs) 
are a common building block of 
many parallel machines 

• The preferred programming model 
for SMPs with threads 
♦ POSIX (“pthreads”) 
♦ OpenMP 
♦ sproc (SGI) 
♦ compiler-managed parallelism 
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Thread Interfaces 

•  POSIX “pthreads” 
•  Windows 

♦  Kernel threads 
♦  User threads called “fibers” 

•  Java 
♦  First major language with threads in the language 
♦  Provides memory synchronization model: methods 

(procedures) declared “synchronized” executed by 
one thread at a time 

♦  (don’t mention Ada, which has tasks) 
•  OpenMP 

♦  Mostly directive-based parallel loops 
♦  Some thread features (lock/unlock) 
♦  http://www.openmp.org 

Library-based 

Invoke a routine in a 
separate thread 
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Threads and MPI 

•  MPI_Init_thread(&argc,&argv,required,&provided) 
♦  Thread modes: 

•  MPI_THREAD_SINGLE — One thread (MPI_Init) 
•  MPI_THREAD_FUNNELED — One thread making MPI 

calls – most common case when MPI combined with 
OpenMP 

•  MPI_THREAD_SERIALIZED — One thread at a time 
making MPI calls 

•  MPI_THREAD_MULTIPLE — Free for all 

•  Coexist with compiler (thread) parallelism for 
SMPs 

•  MPI could have defined the same modes on a 
communicator basis (more natural, and MPICH 
will do this through attributes) 
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What’s in MPI-2 

•  Extensions to the message-passing model 
♦  Dynamic process management 
♦  One-sided operations (remote memory access) 
♦  Parallel I/O 
♦  Thread support 

•  Making MPI more robust and convenient 
♦  C++ and Fortran 90 bindings 
♦  External interfaces, handlers 
♦  Extended collective operations 
♦  Language interoperability 
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MPI as a Setting for Parallel 
I/O 

•  Writing is like sending and reading is 
like receiving 

•  Any parallel I/O system will need: 
♦  collective operations 
♦ user-defined datatypes to describe both 

memory and file layout 
♦  communicators to separate application-level 

message passing from I/O-related message 
passing 

♦ non-blocking operations 
•  I.e., lots of MPI-like machinery 
•  We will discuss a high-level approach to 

using MPI-IO 
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One-Sided Operations in MPI-2 
(also called Remote Memory Access) 

•  Synchronization is separate from data 
movement. 

•  Balancing efficiency and portability across a 
wide class of architectures 
♦  shared-memory multiprocessors 
♦ NUMA architectures 
♦ distributed-memory MPP’s, clusters 
♦ Workstation networks 

•  Retaining “look and feel” of MPI-1 
•  Dealing with subtle memory behavior 

issues:  cache coherence, sequential 
consistency 
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Remote Memory Access 
Windows and Window Objects 

Get 

Put 

Process 2 

Process 1 

Process 3 

Process 0 

=  address spaces =  window object 

window 
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Why Use RMA? 

• Performance 
• May allow more dynamic, 

asynchronous algorithms 
• But Get/Put is not Load/Store 

♦ Synchronization is exposed in MPI 
one-sided operations 
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Basic RMA Functions for 
Communication  

•  MPI_Win_create exposes local memory to RMA 
operation by other processes in a communicator 
♦  Collective operation  
♦  Creates window object 

•  MPI_Win_free deallocates window object 

•  MPI_Put moves data from local memory to remote 
memory 

•  MPI_Get retrieves data from remote memory into local 
memory 

•  MPI_Accumulate updates remote memory using local 
values 

•  Data movement operations are non-blocking 
•  Subsequent synchronization on window object needed 

to ensure operation is complete 
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RMA Functions for 
Synchronization  

•  Multiple ways to synchronize: 
•  MPI_Win_fence – barrier across all processes 

participating in window, allows BSP-like model 
•  MPI_Win_{start, complete, post, wait} 

♦  involves groups of processes, such as nearest neighbors in 
grid 

•  MPI_Win_{lock, unlock} – involves single other 
process 
♦  Not to be confused with lock,unlock used with threads 
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Comparing RMA and  
Point-to-Point Communication 

• The following example shows how 
to achieve the same 
communication pattern using 
point-to-point and remote memory 
access communication 

•  Illustrates the issues, not an 
example of where to use RMA 



University of Chicago Department of Energy 
105 

Point-to-point 

/* Create communicator for separate context for processes 0 and 1 */ 
MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
MPI_Comm_split( MPI_COMM_WORLD, rank <= 1, rank, &comm ); 
/* Only processes 0 and 1 execute the rest of this */ 
if (rank > 1) return; 
/* Process 0 sends and Process 1 receives */ 
if (rank == 0) { 
    MPI_Isend( outbuf, n, MPI_INT, 1, 0, comm, &request ); 
} 
else if (rank == 1) { 
    MPI_Irecv( inbuf, n, MPI_INT, 0, 0, comm, &request ); 
} 
/* Allow other operations to proceed (communication or  
   computation) */ 
… 
/* Complete the operation */ 
MPI_Wait( &request, &status ); 
/* Free communicator */ 
MPI_Comm_free( &comm ); 
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RMA  
/* Create memory window for separate context for processes 0 
and 1 */ 
MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
MPI_Comm_split( MPI_COMM_WORLD, rank <= 1, rank, &comm ); 
if (rank == 0)  
    MPI_Win_create( NULL, 0, sizeof(int), 
                    MPI_INFO_NULL, comm, &win ); 
else if (rank == 1 )  
    MPI_Win_create( inbuf, n * sizeof(int), sizeof(int),  
                    MPI_INFO_NULL, comm, &win ); 
/* Only processes 0 and 1 execute the rest of this */ 
if (rank > 1) return; 
/* Process 0 puts into process 1 */ 
MPI_Win_fence( 0, win ); 
if (rank == 0) 
    MPI_Put( outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win ); 
/* Allow other operations to proceed (communication or 
computation) */ 
… 
/* Complete the operation */ 
MPI_Win_fence( 0, win ); 
/* Free the window */ 
MPI_Win_free( &win ); 
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Using MPI_Win_fence  

MPI_Win_create( A, ..., &win ); 
MPI_Win_fence( 0, win ); 
if (rank == 0) {     
    /* Process 0 puts data into many local windows */ 
    MPI_Put( ... , win ); 
    MPI_Put( ... , win ); 
} 
/* This fence completes the MPI_Put operations initiated 
   by process 0 */ 
MPI_Win_fence( 0, win ); 
/* All processes initiate access to some window to extract data */ 
MPI_Get( ... , win ); 
/* The following fence completes the MPI_Get operations */ 
MPI_Win_fence( 0, win ); 
/* After the fence, processes can load and store into A, the local window */ 
A[rank] = 4; 
printf( "A[%d] = %d\n", 0, A[0] ); 
MPI_Win_fence( 0, win ); 
/* We need a fence between stores and RMA operations */ 
MPI_Put( ... , win ); 
/* The following fence completes the preceding Put */ 
MPI_Win_fence( 0, win ); 
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Example of MPI RMA: 
Ghost Point Exchange 

• Multiparty data exchange 
•  Jacobi iteration in 2 dimensions 

♦ Model for PDEs, Sparse matrix-vector 
products, and algorithms with 
surface/volume behavior 

♦ Issues are similar to unstructured 
grid problems (but harder to 
illustrate) 
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Jacobi Iteration 
(Fortran Ordering) 

•  Simple parallel data structure 

•  Processes exchange columns with neighbors 
•  Local part declared as xlocal(m,0:n+1) 

Process 0 Process 1 Process 2 Process 3 

Boundary Point 

Interior Node 

m+2 

n 
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Ghostpoint Exchange with 
RMA 

subroutine exchng1( a, m, s, e, win, left_nbr, right_nbr ) 
use mpi 
integer m, s, e 
double precision a(0:m+1,s-1:e+1) 
integer win, left_nbr, right_nbr 
integer ierr 
integer(kind=MPI_ADDRESS_KIND) left_ghost_disp, right_ghost_disp 
 
call MPI_WIN_FENCE( 0, win, ierr ) 
! Put left edge into left neighbor's right ghost cells 
right_ghost_disp = 1 + (m+2)*(e-s+2) 
call MPI_PUT( a(1,s), m, MPI_DOUBLE_PRECISION, & 
              left_nbr, right_ghost_disp, m, & 
              MPI_DOUBLE_PRECISION, win, ierr ) 
! Put bottom edge into right neighbor's left ghost cells 
left_ghost_disp = 1 
call MPI_PUT( a(1,e), m, MPI_DOUBLE_PRECISION, & 
              right_nbr, left_ghost_disp, m, & 
              MPI_DOUBLE_PRECISION, win, ierr ) 
call MPI_WIN_FENCE( 0, win, ierr ) 
return 
end 
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MPI-2 Status Assessment 

•  All MPP vendors now have MPI-1. Free 
implementations (MPICH, LAM) support 
heterogeneous workstation networks. 

•  MPI-2 implementations are being undertaken now 
by all vendors. 
♦  Multiple complete MPI-2 implementations available 

•  MPI-2 implementations appearing piecemeal, with 
I/O first. 
♦  I/O available in most MPI implementations 
♦  One-sided available in some (e.g .NEC and Fujitsu, parts 

from SGI and HP, parts coming soon from IBM) 
♦  MPI RMA an important part of the spectacular results on 

the Earth Simulator 
♦  Most of dynamic and one sided in LAM, WMPI, MPICH2 
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MPICH Goals 

•  Complete MPI implementation 
•  Portable to all platforms supporting the message-

passing model 
•  High performance on high-performance hardware 
•  As a research project: 

♦  exploring tradeoff between portability and performance 
♦  removal of performance gap between user level (MPI) and 

hardware capabilities 
•  As a software project: 

♦  a useful free implementation for most machines 
♦  a starting point for vendor proprietary implementations 
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MPICH2 

•  All-new implementation is our vehicle for research in 
♦  Thread safety and efficiency (e.g., avoid thread locks) 
♦  Optimized MPI datatypes 
♦  Optimized Remote Memory Access (RMA) 
♦  High Scalability (64K MPI processes and more) 
♦  Exploiting Remote Direct Memory Access (RDMA) capable networks 

(Myrinet) 
♦  All of MPI-2, including dynamic process management, parallel I/O, 

RMA 
•  Parallel Environments 

♦  Clusters 
♦  IBM BG/L 
♦  New interconnect technologies (Infiniband) 
♦  Cray Red Storm 
♦  Others 
♦  Many vendors start with MPICH in crafting custom, optimized MPI’s 
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MPICH-2 Status and 
Schedule 

•  Supports all of MPI-1 and all of MPI-2, including all of 
MPI-IO, active-target RMA, dynamic processes, passive-
target RMA on many platforms 

•  Improved performance 
•  New algorithms for collective operations 
•  Improved robustness 
•  Process manager interface 

♦  Supports multiple process managers 
♦  Includes the MPD-based manager (provides scalable 

startup) 
•  Multiple devices implemented 

♦  Sockets, shared memory, Infiniband 
♦  Many groups already using MPICH2 for their MPI 

implementations 
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Getting MPICH for Your 
Cluster 

• MPICH1: 
♦ www.mcs.anl.gov/mpi/mpich 

• MPICH2: 
♦ www.mcs.anl.gov/mpi/mpich2 
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High-Level Programming 
With MPI 

• MPI was designed from the 
beginning to support libraries 

• Many libraries exist, both open 
source and commercial 

• Sophisticated numerical programs 
can be built using libraries 
♦ Scalable I/O of data to a community 

standard file format 
♦ Solve a PDE  (e.g., PETSc) 
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Higher Level I/O Libraries 

•  Scientific applications work with 
structured data and desire more self-
describing file formats 

•  netCDF and HDF5 are two popular 
“higher level” I/O libraries 
♦ Abstract away details of file layout 
♦ Provide standard, portable file formats 
♦  Include metadata describing contents 

•  For parallel machines, these should be 
built on top of MPI-IO 
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Parallel netCDF (PnetCDF) 

•  Collaboration between NWU and ANL as part of 
the Scientific Data Management SciDAC 

•  netCDF 
♦  API for accessing multi-dimensional data sets 
♦  Portable file format 

•  Popular in both fusion and climate communities 
•  Parallel netCDF is an effort to 

♦  Very similar API to netCDF 
♦  Tuned for better performance in today’s computing 

environments 
♦  Retains the file format so netCDF and PnetCDF 

applications can share files 
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I/O in netCDF 

•  Original netCDF 
♦  Parallel read 

•  All processes read the file independently 
•  No possibility of collective optimizations 

♦  Sequential write 
•  Parallel writes are carried out by 

shipping data to a single process 

•  PnetCDF 
♦  Parallel read/write to shared netCDF 

file 
♦  Built on top of MPI-IO which utilizes 

optimal I/O facilities of the parallel file 
system and MPI-IO implementation 

♦  Allows for MPI-IO hints and datatypes 
for further optimization 

P0 P1 P2 P3 

netCDF 

Parallel File System 

Parallel netCDF 

P0 P1 P2 P3 

Parallel File System 
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PnetCDF Example Part 1 

int main(int argc, char *argv[]) 
{ 
 double temps[512*512/NR_PROCS]; 
 int status, lon_id, lat_id, temp_id, dim_id[2], 
     dim_off[2], dim_size[2]; 
 status = ncmpi_create(MPI_COMM_WORLD, “foo”, 
          NC_CLOBBER, MPI_INFO_NULL, &file_id); 
 status = ncmpi_def_dim(file_id, “longitude”, 
          512, &lon_id); 
 status = ncmpi_def_dim(file_id, “latitude”, 
          512, &lat_id); 
 dim_id[0] = lon_id; dim_id[1] = lat_id; 
 status = ncmpi_def_var(file_id, “temp”, 
          NC_DOUBLE, 2, dim_id, &temp_id); 
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PnetCDF Example Part 2 

 /* leave define mode, enter coll. data mode */ 
 status = ncmpi_enddef(file_id); 

 
 partition_problem_space(dim_off, dim_size); 

 
  /* perform calculations until time to write */ 
 
 /* each proc. writes its part. collectively */ 
 status = ncmpi_put_vara_double_all(file_id, 
          temp_id, dim_off, dim_size, temps); 

 
 status = ncmpi_close(file_id); 

} 
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More Information on 
PnetCDF 

• Parallel netCDF web site: 
http://www.mcs.anl.gov/parallel-

netcdf/ 
• Parallel netCDF mailing list: 

Mail to majordomo@mcs.anl.gov with 
the body “subscribe parallel-netcdf” 

• The SDM SciDAC web site: 
http://sdm.lbl.gov/sdmcenter/ 
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The PETSc Library 

•  PETSc provides routines for the parallel 
solution of systems of equations that 
arise from the discretization of PDEs 
♦  Linear systems 
♦ Nonlinear systems 
♦ Time evolution 

•  PETSc also provides routines for 
♦ Sparse matrix assembly 
♦ Distributed arrays 
♦ General scatter/gather (e.g., for 

unstructured grids) 
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Hello World in PETSc 

#include "petsc.h" 

int main( int argc, char *argv[] ) 

{ 

  int rank; 

  PetscInitialize( &argc, &argv, 0, 0 ); 

  MPI_Comm_rank( PETSC_COMM_WORLD, &rank ); 

  PetscSynchronizedPrintf( PETSC_COMM_WORLD, 

 "Hello World from rank %d\n", rank ); 

  PetscSynchronizedFlush( PETSC_COMM_WORLD ); 

  PetscFinalize( ); 

  return 0; 
} 
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Computation and Communication Kernels"
MPI, MPI-IO, BLAS, LAPACK"

Profiling Interface"

PETSc PDE Application Codes"

Object-Oriented"
Matrices, Vectors, Indices"

Grid"
Management"

Linear Solvers"
Preconditioners + Krylov Methods"

Nonlinear Solvers,"
Unconstrained Minimization"

ODE Integrators" Visualization"

Interface 

Structure of PETSc 
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Compressed 
Sparse Row 

(AIJ) 

Blocked Compressed 
Sparse Row 

(BAIJ) 

Block 
Diagonal 
(BDIAG) 

Dense Other 

Indices Block Indices Stride Other 
Index Sets 

Vectors 

Line Search Trust Region 

Newton-based Methods 
Other 

Nonlinear Solvers 

Additive 
Schwartz 

Block 
Jacobi Jacobi ILU ICC LU 

(Sequential only) Others 
Preconditioners 

Euler Backward 
Euler 

Pseudo Time 
Stepping Other 

Time Steppers 

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other 
Krylov Subspace Methods 

Matrices 

PETSc Numerical Components 

Distributed Arrays 

Matrix-free 
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PETSc code User code 

Application 
Initialization 

Function 
Evaluation 

Jacobian 
Evaluation 

Post- 
Processing 

PC KSP 
PETSc 

Main Routine 

Linear Solvers (SLES) 

Nonlinear Solvers (SNES) 

Timestepping Solvers (TS) 

Flow of Control for PDE 
Solution 
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Poisson Solver in PETSc 
•  The following 7 slides show a complete 2-d 

Poisson solver in PETSc.  Features of this 
solver: 
♦  Fully parallel 
♦  2-d decomposition of the 2-d mesh 
♦  Linear system described as a sparse matrix; user can 

select many different sparse data structures 
♦  Linear system solved with any user-selected Krylov 

iterative method and preconditioner provided by 
PETSc, including GMRES with ILU, BiCGstab with 
Additive Schwarz, etc. 

♦  Complete performance analysis built-in 

•  Only 7 slides of code! 



/* -*- Mode: C; c-basic-offset:4 ; -*- */ 
#include <math.h> 
#include "petscsles.h" 
#include "petscda.h" 
extern Mat FormLaplacianDA2d( DA, int ); 
extern Vec FormVecFromFunctionDA2d( DA, int, double (*)(double,double) ); 
/* This function is used to define the right-hand side of the  
   Poisson equation to be solved */ 
double func( double x, double y ) { 
    return sin(x*M_PI)*sin(y*M_PI); } 
 
int main( int argc, char *argv[] ) 
{ 
    SLES       sles; 
    Mat        A; 
    Vec        b, x; 
    DA         grid; 
    int        its, n, px, py, worldSize; 
 
    PetscInitialize( &argc, &argv, 0, 0 );     

Solve a Poisson Problem with Preconditioned GMRES 

PETSC “objects” hide 
details of distributed 
data structures and 
function parameters  



    /* Get the mesh size.  Use 10 by default */ 
    n = 10; 
    PetscOptionsGetInt( PETSC_NULL, "-n", &n, 0 ); 
    /* Get the process decomposition.  Default it the same as without 
       DAs */ 
    px = 1; 
    PetscOptionsGetInt( PETSC_NULL, "-px", &px, 0 ); 
    MPI_Comm_size( PETSC_COMM_WORLD, &worldSize ); 
    py = worldSize / px; 
     
    /* Create a distributed array */ 
    DACreate2d( PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR, 

  n, n, px, py, 1, 1, 0, 0, &grid ); 
 
    /* Form the matrix and the vector corresponding to the DA */ 
    A = FormLaplacianDA2d( grid, n ); 
    b = FormVecFromFunctionDA2d( grid, n, func ); 
    VecDuplicate( b, &x ); 
     

PETSc provides 
routines to access 
parameters and 
defaults 

PETSc provides 
routines to create, 
allocate, and 
manage distributed 
data structures 



    SLESCreate( PETSC_COMM_WORLD, &sles ); 
    SLESSetOperators( sles, A, A, DIFFERENT_NONZERO_PATTERN ); 
    SLESSetFromOptions( sles ); 
    SLESSolve( sles, b, x, &its ); 
 
 
    PetscPrintf( PETSC_COMM_WORLD, "Solution is:\n" ); 
    VecView( x, PETSC_VIEWER_STDOUT_WORLD ); 
    PetscPrintf( PETSC_COMM_WORLD, "Required %d iterations\n", its ); 
 
    MatDestroy( A ); VecDestroy( b ); VecDestroy( x ); 
    SLESDestroy( sles ); DADestroy( grid ); 
    PetscFinalize( ); 
    return 0; 
} 
 

PETSc provides 
routines that solve 
systems of sparse 
linear (and 
nonlinear) equations 

PETSc provides 
coordinated I/O 
(behavior is as-if a 
single process), 
including the output of 
the distributed “vec” 
object 



/* -*- Mode: C; c-basic-offset:4 ; -*- */ 
#include "petsc.h" 
#include "petscvec.h" 
#include "petscda.h" 
 
/* Form a vector based on a function for a 2-d regular mesh on the  
   unit square */ 
Vec FormVecFromFunctionDA2d( DA grid, int n,  
                             double (*f)( double, double ) ) 
{ 
    Vec    V; 
    int    is, ie, js, je, in, jn, i, j; 
    double h; 
    double **vval; 
 
    h = 1.0 / (n + 1);  
    DACreateGlobalVector( grid, &V ); 
 
    DAVecGetArray( grid, V, (void **)&vval ); 
     



/* Get global coordinates of this patch in the DA grid */ 
DAGetCorners( grid, &is, &js, 0, &in, &jn, 0 ); 
ie = is + in - 1; 
je = js + jn - 1; 
     
 for (i=is ; i<=ie ; i++) { 

 for (j=js ; j<=je ; j++){ 
     vval[j][i] = (*f)( (i + 1) * h, (j + 1) * h ); 
 } 

    } 
    DAVecRestoreArray( grid, V, (void **)&vval ); 
 
    return V; 
} 
 

Almost the uniprocess 
code 



/* -*- Mode: C; c-basic-offset:4 ; -*- */ 
#include "petscsles.h" 
#include "petscda.h" 
 
/* Form the matrix for the 5-point finite difference 2d Laplacian 
   on the unit square. n is the number of interior points along a  
   side */ 
Mat FormLaplacianDA2d( DA grid, int n ) 
{ 
    Mat    A; 
    int    r, i, j, is, ie, js, je, in, jn, nelm; 
    MatStencil cols[5], row; 
    double     h, oneByh2, vals[5]; 
 
    h = 1.0 / (n + 1); oneByh2 = 1.0 / (h*h); 
 
    DAGetMatrix( grid, MATMPIAIJ, &A ); 
    /* Get global coordinates of this patch in the DA grid */ 
    DAGetCorners( grid, &is, &js, 0, &in, &jn, 0 ); 
    ie = is + in - 1; 
    je = js + jn - 1; 
     

Creating a Sparse Matrix, Distributed Across All Processes 

Creates a parallel 
distributed matrix using 
compressed sparse row 
format 



for (i=is; i<=ie; i++) { 
 for (j=js; j<=je; j++){ 
     row.j = j; row.i = i; nelm = 0; 
     if (j - 1 > 0) { 
  vals[nelm]   = oneByh2; 
  cols[nelm].j = j - 1; cols[nelm++].i = i;} 
     if (i - 1 > 0) { 
  vals[nelm]   = oneByh2; 
  cols[nelm].j = j;     cols[nelm++].i = i - 1;} 
     vals[nelm]   = - 4 * oneByh2; 
     cols[nelm].j = j;         cols[nelm++].i = i; 
     if (i + 1 < n - 1) { 
  vals[nelm]   = oneByh2; 
  cols[nelm].j = j;     cols[nelm++].i = i + 1;} 
     if (j + 1 < n - 1) { 
  vals[nelm]   = oneByh2; 
  cols[nelm].j = j + 1; cols[nelm++].i = i;} 
     MatSetValuesStencil( A, 1, &row, nelm, cols, vals,  

                                 INSERT_VALUES ); 
 } 

    } 
 
    MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY); 
    MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY); 
 
    return A; 
} 

Just the usual 
code for setting 
the elements of 
the sparse matrix 
(the complexity 
comes, as it often 
does, from the 
boundary 
conditions 
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Full-Featured PDE Solver 

• Command-line control of Krylov 
iterative method (choice of 
algorithms and parameters)  

•  Integrated performance analysis  
• Optimized parallel sparse-matrix 

operations 

• Question: How many MPI calls 
used in example? 
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•  -ksp_type  [cg,gmres,bcgs,tfqmr,…] 
•  -pc_type  [lu,ilu,jacobi,sor,asm,…] 

•  -ksp_max_it  <max_iters> 
•  -ksp_gmres_restart  <restart> 
•  -pc_asm_overlap  <overlap> 
•  -pc_asm_type  [basic,restrict,interpolate,none] 
•  etc ... 

Setting Solver Options at 
Runtime 
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Other Libraries 

•  Many libraries exist 
♦  Freely available libraries 

•  PETSc, ScaLAPACK, FFTW, HDF5, DOUG, GeoFEM, 
MP_SOLVE, MpCCI, PARASOL, ParMETIS, 
Prometheus, PSPASES, PLAPACK, S+, TCGMSG-MPI, 
Trilinos, SPRNG, TAO, … 

♦ Commercially supported libraries 
•  E.g., NAG, IBM PESSL, IMSL, … 

♦ More at www.mcs.anl.gov/mpi/libraries.html 
•  These provide the building blocks for 

building large, complex, and efficient 
programs 
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Some Final Comments 

•  It isn’t how fast you can program 
something easy 

•  It is how fast you can program what 
you need 

•  Libraries give MPI an advantage over 
other parallel programming models 

•  Libraries provide a way to build custom 
high-level programming environments 
♦ Many exist — use them if possible 
♦ Otherwise, create your own! 
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Conclusion 

•  MPI provides a well-developed, efficient and 
portable model for programming parallel 
computers 

•  Just as important, MPI provides features that 
enable and encourage the construction of 
software components.   

•  Parallel applications can often be quickly built 
using these components 

•  Even when no available component meets 
your needs, using component-oriented design 
can simplify the process of writing and 
debugging an application with MPI. 


